Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Visual and Vehicular Sensors for Driver Behavior Analysis: A Survey (2308.13406v1)

Published 25 Aug 2023 in cs.LG and cs.CV

Abstract: Risky drivers account for 70% of fatal accidents in the United States. With recent advances in sensors and intelligent vehicular systems, there has been significant research on assessing driver behavior to improve driving experiences and road safety. This paper examines the various techniques used to analyze driver behavior using visual and vehicular data, providing an overview of the latest research in this field. The paper also discusses the challenges and open problems in the field and offers potential recommendations for future research. The survey concludes that integrating vision and vehicular information can significantly enhance the accuracy and effectiveness of driver behavior analysis, leading to improved safety measures and reduced traffic accidents.

Summary

We haven't generated a summary for this paper yet.