Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalizable Zero-Shot Speaker Adaptive Speech Synthesis with Disentangled Representations (2308.13007v1)

Published 24 Aug 2023 in cs.SD, cs.AI, and eess.AS

Abstract: While most research into speech synthesis has focused on synthesizing high-quality speech for in-dataset speakers, an equally essential yet unsolved problem is synthesizing speech for unseen speakers who are out-of-dataset with limited reference data, i.e., speaker adaptive speech synthesis. Many studies have proposed zero-shot speaker adaptive text-to-speech and voice conversion approaches aimed at this task. However, most current approaches suffer from the degradation of naturalness and speaker similarity when synthesizing speech for unseen speakers (i.e., speakers not in the training dataset) due to the poor generalizability of the model in out-of-distribution data. To address this problem, we propose GZS-TV, a generalizable zero-shot speaker adaptive text-to-speech and voice conversion model. GZS-TV introduces disentangled representation learning for both speaker embedding extraction and timbre transformation to improve model generalization and leverages the representation learning capability of the variational autoencoder to enhance the speaker encoder. Our experiments demonstrate that GZS-TV reduces performance degradation on unseen speakers and outperforms all baseline models in multiple datasets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.