Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing Autoencoder to Geometrical Features for Vascular Bifurcations Identification (2308.12314v1)

Published 23 Aug 2023 in eess.IV and q-bio.NC

Abstract: The cerebrovascular tree is a complex anatomical structure that plays a crucial role in the brain irrigation. A precise identification of the bifurcations in the vascular network is essential for understanding various cerebral pathologies. Traditional methods often require manual intervention and are sensitive to variations in data quality. In recent years, deep learning techniques, and particularly autoencoders, have shown promising performances for feature extraction and pattern recognition in a variety of domains. In this paper, we propose two novel approaches for vascular bifurcation identification based respectiveley on Autoencoder and geometrical features. The performance and effectiveness of each method in terms of classification of vascular bifurcations using medical imaging data is presented. The evaluation was performed on a sample database composed of 91 TOF-MRA, using various evaluation measures, including accuracy, F1 score and confusion matrix.

Summary

We haven't generated a summary for this paper yet.