Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong limit theorems for empirical halfspace depth trimmed regions (2308.11393v2)

Published 22 Aug 2023 in math.PR, math.MG, math.ST, and stat.TH

Abstract: We study empirical variants of the halfspace (Tukey) depth of a probability measure $\mu$, which are obtained by replacing $\mu$ with the corresponding weighted empirical measure. We prove analogues of the Marcinkiewicz--Zygmund strong law of large numbers and of the law of the iterated logarithm in terms of set inclusions and for the Hausdorff distance between the theoretical and empirical variants of depth trimmed regions. In the special case of $\mu$ being the uniform distribution on a convex body $K$, the depth trimmed regions are convex floating bodies of $K$, and we obtain strong limit theorems for their empirical estimators.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. K. S. Alexander and M. Talagrand. The law of the iterated logarithm for empirical processes on Vapnik-Červonenkis classes. J. Multivariate Anal., 30(1):155–166, 1989.
  2. I. Bárány. Intrinsic volumes and f𝑓fitalic_f-vectors of random polytopes. Math. Ann., 285(4):671–699, 1989.
  3. A. A. Borovkov. Mathematical Statistics. Gordon and Breach Science Publishers, Amsterdam, 1998.
  4. V.-E. Brunel. Concentration of the empirical level sets of Tukey’s halfspace depth. Probab. Theory Related Fields, 173:1165–1196, 2019.
  5. M. Csörgő and P. Révész. Strong approximations of the quantile process. Ann. Statist., 6(4):882–894, 1978.
  6. Uniform brackets, containers, and combinatorial Macbeath regions. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pages 59:1–59:10, Dagstuhl, Germany, 2022.
  7. R. Dyckerhoff. Convergence of depths and depth-trimmed regions. Technical report, arXiv math:1611.08721, 2017.
  8. D. Fresen. A multivariate Gnedenko law of large numbers. Ann. Probab., 41(5):3051–3080, 2013.
  9. A. Gut. Probability: A Graduate Course. Springer Texts in Statistics. Springer, New York, second edition, 2013.
  10. A. Ilienko and I. Molchanov. Limit theorems for multidimensional renewal sets. Acta Math. Hungar., 156(1):56–81, 2018.
  11. P. Laketa and S. Nagy. Halfspace depth for general measures: the ray basis theorem and its consequences. Statist. Papers, 63(3):849–883, 2022.
  12. K. Leichtweiss. Über eine Formel Blaschkes zur Affinoberfläche. Studia Sci. Math. Hungar., 21(3-4):453–474, 1986.
  13. P. Massart and E. Rio. A uniform Marcinkiewicz-Zygmund strong law of large numbers for empirical processes. In Asymptotic Methods in Probability and Statistics (Ottawa, ON, 1997), pages 199–211. North-Holland, Amsterdam, 1998.
  14. J.-C. Massé. Asymptotics for the Tukey depth process, with an application to a multivariate trimmed mean. Bernoulli, 10(3):397–419, 2004.
  15. M. Meyer and S. Reisner. A geometric property of the boundary of symmetric convex bodies and convexity of flotation surfaces. Geom. Dedicata, 37(3):327–337, 1991.
  16. I. Mizera and M. Volauf. Continuity of halfspace depth contours and maximum depth estimators: diagnostics of depth-related methods. J. Multivariate Anal., 83(2):365–388, 2002.
  17. I. Molchanov. A limit theorem for solutions of inequalities. Scand. J. Statist., 25(1):235–242, 1998.
  18. I. Molchanov. Theory of Random Sets. London: Springer, 2nd edition, 2017.
  19. M. Molina-Fructuoso and R. Murray. Tukey depths and Hamilton-Jacobi differential equations. SIAM J. Math. Data Sci., 4(2):604–633, 2022.
  20. Halfspace depth and floating body. Stat. Surv., 13:52–118, 2019.
  21. P. J. Rousseeuw and I. Ruts. The depth function of a population distribution. Metrika, 49(3):213–244, 1999.
  22. R. Schneider. Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge, expanded edition, 2014.
  23. C. Schütt and E. Werner. The convex floating body. Math. Scand., 66(2):275–290, 1990.
  24. C. Schütt and E. Werner. Homothetic floating bodies. Geom. Dedicata, 49(3):335–348, 1994.
  25. Empirical Processes with Applications to Statistics. John Wiley & Sons, Inc., New York, 1986.
  26. J. W. Tukey. Mathematics and the picturing of data. In Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 2, pages 523–531, 1975.
  27. A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. Springer-Verlag, New York, 1996.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com