Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Halfspace depth for general measures: The ray basis theorem and its consequences (2106.00616v1)

Published 31 May 2021 in math.ST, stat.ME, and stat.TH

Abstract: The halfspace depth is a prominent tool of nonparametric multivariate analysis. The upper level sets of the depth, termed the trimmed regions of a measure, serve as a natural generalization of the quantiles and inter-quantile regions to higher-dimensional spaces. The smallest non-empty trimmed region, coined the halfspace median of a measure, generalizes the median. We focus on the (inverse) ray basis theorem for the halfspace depth, a crucial theoretical result that characterizes the halfspace median by a covering property. First, a novel elementary proof of that statement is provided, under minimal assumptions on the underlying measure. The proof applies not only to the median, but also to other trimmed regions. Motivated by the technical development of the amended ray basis theorem, we specify connections between the trimmed regions, floating bodies, and additional equi-affine convex sets related to the depth. As a consequence, minimal conditions for the strict monotonicity of the depth are obtained. Applications to the computation of the depth and robust estimation are outlined.

Citations (5)

Summary

We haven't generated a summary for this paper yet.