Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Thermocapillary Thin Films: Periodic Steady States and Film Rupture (2308.11279v2)

Published 22 Aug 2023 in math.AP, nlin.PS, and physics.flu-dyn

Abstract: We study stationary, periodic solutions to the thermocapillary thin-film model \begin{equation*} \partial_t h + \partial_x \Bigl(h3(\partial_x3 h - g\partial_x h) + M\frac{h2}{(1+h)2}\partial_xh\Bigr) = 0,\quad t>0,\ x\in \mathbb{R}, \end{equation*} which can be derived from the B\'enard-Marangoni problem via a lubrication approximation. When the Marangoni number $M$ increases beyond a critical value $M*$, the constant solution becomes spectrally unstable via a (conserved) long-wave instability and periodic stationary solutions bifurcate. For a fixed period, we find that these solutions lie on a global bifurcation curve of stationary, periodic solutions with a fixed wave number and mass. Furthermore, we show that the stationary periodic solutions on the global bifurcation branch converge to a weak stationary periodic solution which exhibits film rupture. The proofs rely on a Hamiltonian formulation of the stationary problem and the use of analytic global bifurcation theory. Finally, we show the instability of the bifurcating solutions close to the bifurcation point and give a formal derivation of the amplitude equation governing the dynamics close to the onset of instability.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com