Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster Optimization in S-Graphs Exploiting Hierarchy (2308.11242v1)

Published 22 Aug 2023 in cs.RO and cs.AI

Abstract: 3D scene graphs hierarchically represent the environment appropriately organizing different environmental entities in various layers. Our previous work on situational graphs extends the concept of 3D scene graph to SLAM by tightly coupling the robot poses with the scene graph entities, achieving state-of-the-art results. Though, one of the limitations of S-Graphs is scalability in really large environments due to the increased graph size over time, increasing the computational complexity. To overcome this limitation in this work we present an initial research of an improved version of S-Graphs exploiting the hierarchy to reduce the graph size by marginalizing redundant robot poses and their connections to the observations of the same structural entities. Firstly, we propose the generation and optimization of room-local graphs encompassing all graph entities within a room-like structure. These room-local graphs are used to compress the S-Graphs marginalizing the redundant robot keyframes within the given room. We then perform windowed local optimization of the compressed graph at regular time-distance intervals. A global optimization of the compressed graph is performed every time a loop closure is detected. We show similar accuracy compared to the baseline while showing a 39.81% reduction in the computation time with respect to the baseline.

Citations (1)

Summary

We haven't generated a summary for this paper yet.