Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-Stock: Task-Difficulty-Adaptive Meta-learning for Sub-new Stock Price Prediction (2308.11117v1)

Published 22 Aug 2023 in cs.CE

Abstract: Sub-new stock price prediction, forecasting the price trends of stocks listed less than one year, is crucial for effective quantitative trading. While deep learning methods have demonstrated effectiveness in predicting old stock prices, they require large training datasets unavailable for sub-new stocks. In this paper, we propose Meta-Stock: a task-difficulty-adaptive meta-learning approach for sub-new stock price prediction. Leveraging prediction tasks formulated by old stocks, our meta-learning method aims to acquire the fast generalization ability that can be further adapted to sub-new stock price prediction tasks, thereby solving the data scarcity of sub-new stocks. Moreover, we enhance the meta-learning process by incorporating an adaptive learning strategy sensitive to varying task difficulties. Through wavelet transform, we extract high-frequency coefficients to manifest stock price volatility. This allows the meta-learning model to assign gradient weights based on volatility-quantified task difficulty. Extensive experiments on datasets collected from three stock markets spanning twenty-two years prove that our Meta-Stock significantly outperforms previous methods and manifests strong applicability in real-world stock trading. Besides, we evaluate the reasonability of the task difficulty quantification and the effectiveness of the adaptive learning strategy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Linghao Wang (2 papers)
  2. Zhen Liu (234 papers)
  3. Peitian Ma (2 papers)
  4. Qianli Ma (77 papers)

Summary

We haven't generated a summary for this paper yet.