Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Scattering Amplitudes of Fermions on Monopoles (2308.09401v2)

Published 18 Aug 2023 in hep-th and hep-ph

Abstract: We consider scattering processes involving massless fermions and 't Hooft-Polyakov magnetic monopoles in a minimal SU(2) model and in the Grand Unified SU(5) theory. We construct expressions for on-shell amplitudes for these processes in the $J=0$ partial wave using the spinor helicity basis consisting of single-particle and pairwise helicities. These processes are unsuppressed and are relevant for the monopole catalysis of proton decay. The amplitudes for the minimal processes involving a single fermion scattering on a monopole in the initial state and half-fermion solitons in the final state are presented for the first time and are used to obtain the amplitudes for processes involving more fermions in the initial state and integer fermion numbers in the final state. A number of such anomalous and non-anomalous processes, along with their amplitude expressions, are written down for the $SU(5)$ GUT model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. V. A. Rubakov, “Superheavy Magnetic Monopoles and Proton Decay,” JETP Lett. 33 (1981) 644–646.
  2. C. G. Callan, Jr., “Disappearing Dyons,” Phys. Rev. D 25 (1982) 2141.
  3. C. G. Callan, Jr., “Dyon-Fermion Dynamics,” Phys. Rev. D 26 (1982) 2058–2068.
  4. D. Zwanziger, “Local Lagrangian quantum field theory of electric and magnetic charges,” Phys. Rev. D 3 (1971) 880.
  5. P. A. M. Dirac, “Quantised singularities in the electromagnetic field,” Proc. Roy. Soc. Lond. A 133 no. 821, (1931) 60–72.
  6. G. ’t Hooft, “Magnetic Monopoles in Unified Gauge Theories,” Nucl. Phys. B 79 (1974) 276–284.
  7. A. M. Polyakov, “Particle Spectrum in Quantum Field Theory,” JETP Lett. 20 (1974) 194–195.
  8. T. T. Wu and C. N. Yang, “Dirac Monopole Without Strings: Monopole Harmonics,” Nucl. Phys. B 107 (1976) 365.
  9. Y. Kazama, C. N. Yang, and A. S. Goldhaber, “Scattering of a Dirac Particle with Charge Ze by a Fixed Magnetic Monopole,” Phys. Rev. D 15 (1977) 2287–2299.
  10. J. S. Schwinger, “Magnetic Charge and the Charge Quantization Condition,” Phys. Rev. D 12 (1975) 3105.
  11. D. Zwanziger, “Quantum field theory of particles with both electric and magnetic charges,” Phys. Rev. 176 (1968) 1489–1495.
  12. C. Csáki, S. Hong, Y. Shirman, O. Telem, J. Terning, and M. Waterbury, “Scattering amplitudes for monopoles: pairwise little group and pairwise helicity,” JHEP 08 (2021) 029, [arXiv:2009.14213 [hep-th]].
  13. C. Csáki, S. Hong, Y. Shirman, O. Telem, and J. Terning, “Completing Multiparticle Representations of the Poincaré Group,” Phys. Rev. Lett. 127 no. 4, (2021) 041601, [arXiv:2010.13794 [hep-th]].
  14. C. Csáki, Z.-Y. Dong, O. Telem, J. Terning, and S. Yankielowicz, “Dressed vs. pairwise states, and the geometric phase of monopoles and charges,” JHEP 02 (2023) 211, [arXiv:2209.03369 [hep-th]].
  15. J. J. Thomson, “On momentum in the electric field,” Phil. Mag. Ser. 6 8 no. 45, (1904) 331–356.
  16. D. Zwanziger, “Angular distributions and a selection rule in charge-pole reactions,” Phys. Rev. D 6 (1972) 458–470.
  17. C. Csáki, Y. Shirman, O. Telem, and J. Terning, “Pairwise Multiparticle States and the Monopole Unitarity Puzzle,” Phys. Rev. Lett. 129 no. 18, (2022) 181601.
  18. V. A. Rubakov, “Monopole Catalysis of Proton Decay,” Rept. Prog. Phys. 51 (1988) 189–241.
  19. J. Preskill, “Magnetic Monopoles,” Ann. Rev. Nucl. Part. Sci. 34 (1984) 461–530.
  20. C. G. Callan, Jr., “The Monopole Catalysis S Matrix,” in Workshop on Problems in Unification and Supergravity, pp. 45–53. 1983.
  21. M. van Beest, P. Boyle Smith, D. Delmastro, Z. Komargodski, and D. Tong, “Monopoles, Scattering, and Generalized Symmetries,” [arXiv:2306.07318 [hep-th]].
  22. R. Kitano and R. Matsudo, “Missing final state puzzle in the monopole-fermion scattering,” Phys. Lett. B 832 (2022) 137271, [arXiv:2103.13639 [hep-th]].
  23. Y. Hamada, T. Kitahara, and Y. Sato, “Monopole-fermion scattering and varying Fock space,” JHEP 11 (2022) 116, [arXiv:2208.01052 [hep-th]].
  24. A. Sen, “Role of Conservation Laws in the Callan-Rubakov Process with Arbitrary Number of Generation of Fermions,” Phys. Rev. Lett. 52 (1984) 1755.
  25. L. J. Dixon, “Calculating scattering amplitudes efficiently,” in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 95): QCD and Beyond, pp. 539–584. 1, 1996. [arXiv:hep-ph/9601359].
  26. N. Arkani-Hamed, T.-C. Huang, and Y.-t. Huang, “Scattering amplitudes for all masses and spins,” JHEP 11 (2021) 070, [arXiv:1709.04891 [hep-th]].
  27. V. V. Khoze, “Work in Progress,”.
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com