Transition to anomalous dynamics in a simple random map (2308.09269v2)
Abstract: The famous Bernoulli shift (or dyadic transformation) is perhaps the simplest deterministic dynamical system exhibiting chaotic dynamics. It is a piecewise linear time-discrete map on the unit interval with a uniform slope larger than one, hence expanding, with a positive Lyapunov exponent and a uniform invariant density. If the slope is less than one the map becomes contracting, the Lyapunov exponent is negative, and the density trivially collapses onto a fixed point. Sampling from these two different types of maps at each time step by randomly selecting the expanding one with probability $p$, and the contracting one with probability $1-p$, gives a prototype of a random dynamical system. Here we calculate the invariant density of this simple random map, as well as its position autocorrelation function, analytically and numerically under variation of $p$. We find that the map exhibits a non-trivial transition from fully chaotic to completely regular dynamics by generating a long-time anomalous dynamics at a critical sampling probability $p_c$, defined by a zero Lyapunov exponent. This anomalous dynamics is characterised by an infinite invariant density, weak ergodicity breaking and power law correlation decay.
- A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, Vol. 54 (Cambridge University Press, Cambridge, 1995).
- E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993).
- N. van Kampen, Stochastic processes in physics and chemistry (North Holland, Amsterdam, 1992).
- C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, Springer Series in Synergetics (Springer, Berlin, 2009).
- C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems, Cambridge nonlinear science series, Vol. 4 (Cambridge University Press, Cambridge, 1993).
- D. Evans and G. Morriss, Statistical mechanics of nonequilibrium liquids (Academic Press, London, 1990).
- J. Dorfman, An introduction to chaos in nonequilibrium statistical mechanics (Cambridge University Press, Cambridge, 1999).
- F. Reif, Fundamentals of statistical and thermal physics (McGraw-Hill, Auckland, 1965).
- L. Reichl, A Modern Course in Statistical Physics (Wiley, New York, 2016).
- Y. Kifer, Ergodic theory of random transformations (Birkhäuser, Boston, 1986).
- T. Kapitaniak, Chaos in Systems with Noise (World Scientific, 1990).
- L. Arnold, Random Dynamical Systems, Monographs in Mathematics (Springer, Berlin, 1998).
- S. Ulam and J. von Neumann, Bull. Am. Math. Soc. 51, 660 (1945).
- G. Mayer-Kress and H. Haken, J. Stat. Phys. 26, 149 (1981).
- K. Matsumoto and I. Tsuda, J. Stat. Phys. 31, 87 (1983).
- K. Matsumoto, J. Stat. Phys. 34, 111 (1984).
- R. Klages, Phys. Rev. E 65, 055203(R)/1 (2002a).
- R. Klages, Europhys. Lett. 57, 796 (2002b).
- Y. Sato, T. S. Doan, J. S. W. Lamb, and M. Rasmussen, “Dynamical characterization of stochastic bifurcations in a random logistic map,” (2019), preprint arXiv:1811.03994.
- S. Pelikan, Trans. Am. Math. Soc. 281, 813 (1984).
- A. Lasota and M. C. Mackey, Physica D 28, 143 (1987).
- M. Blank, Mosc. Math. J. 1, 315 (2001).
- Y. Sato and R. Klages, Phys. Rev. Lett. 122, 174101 (2019).
- C. Maldonado and R. A. Pérez Otero, Chaos 31 (2021).
- C. Kalle and B. Zeegers, Nonlinearity 36, 3319 (2023).
- G. Hata and K. Yano, Stochastics and Dynamics 23, 2350006/1 (2023).
- I. Nisoli, J. Stat. Phys. 190, 22/1 (2023).
- K. K. Lin and L.-S. Young, Nonlinearity 21, 899 (2008).
- A. Pikovsky, Z. Phys. B 55, 149 (1984).
- H. Fujisaka and T. Yamada, Prog. Theor. Phys. 74, 918 (1985).
- H. Fujisaka and T. Yamada, Prog. Theor. Phys. 75, 1087 (1986).
- A. Pikovsky and P. Grassberger, J. Phys. A: Math. Gen. 24, 4587 (1991).
- A. Pikovsky, Phys. Lett. A 165, 33 (1992).
- E. Ott and J. Sommer, Phys. Lett. A 188, 39 (1994).
- H. Hata and S. Miyazaki, Phys. Rev. E 55, 5311 (1997).
- R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
- F. Höfling and T. Franosch, Rep. Prog. Phys. 76, 046602/1 (2013).
- G. Zaslavsky, Phys. Rep. 371, 461 (2002).
- T. Geisel and S. Thomae, Phys. Rev. Lett. 52, 1936 (1984).
- G. Zumofen and J. Klafter, Phys. Rev. E 47, 851 (1993).
- R. Artuso and G. Cristadoro, Phys. Rev. Lett. 90, 244101/1 (2003).
- E. Barkai, Phys. Rev. Lett. 90, 104101/1 (2003).
- G. Zaslavsky and D. Usikov, Weak chaos and quasi-regular patterns, Cambridge Nonlinear Science Series (Cambridge University Press, Cambridge, 2001).
- S. Galatolo, Nonlinearity 16, 1219 (2003).
- R. Klages, in From Hamiltonian Chaos to Complex Systems, edited by X. Leoncini and M. Leonetti (Springer, Berlin, 2013) pp. 3–42.
- J. Aaronson, An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, Vol. 50 (American Mathematical Society, Providence, 1997).
- R. Zweimüller, “Surrey notes on infinite ergodic theory,” (2009), unpublished.
- C. Kalle and M. Maggioni, Erg. Th. Dynam. Sys. 42, 141 (2022).
- A. Homburg and C. Kalle, “Iterated function systems of affine expanding and contracting maps on the unit interval,” (2022), preprint arXiv:2207.09987.
- A. Homburg and V. Rabodonandrianandraina, Erg. Th. Dynam. Sys. 40, 1805–1842 (2020).
- Y. Pomeau and P. Manneville, Commun. Math. Phys. 74, 189 (1980).
- P. Manneville, J. Physique 41, 1235 (1980).
- P. Gaspard and X.-J. Wang, Proc. Nat. Acad. Sci. USA 85, 4591 (1988).
- X. Wang, Phys. Rev. A 40, 6647 (1989).
- I. Melbourne and R. Zweimüller, Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 51, 545 (2015).
- M. Thaler, Israel J. Math. 46, 67 (1983).
- M. Thaler, Israel J. Math. 37, 303 (1980).
- R. Zweimüller, Nonlinearity 11, 1263 (1998).
- M. Thaler, Studia Mathematica 143, 103 (2000).
- N. Korabel and E. Barkai, Phys. Rev. E 82, 016209 (2010).
- T. Akimoto and E. Barkai, Phys. Rev. E 87, 032915 (2013).
- J. Yan, Complex Behaviour in Coupled Oscillators, Coupled Map Lattices and Random Dynamical Systems, Ph.D. thesis, Queen Mary University of London (2021).
- A. Homburg, (2023), private communication.
- C. Beck, Physica A 233, 419 (1996).
- J. Bouchaud, J. Phys. I 2, 1705 (1992).
- G. Bel and E. Barkai, Phys. Rev. Lett. 94, 240602/1 (2005).
- R. Metzler, Int. J. Mod. Phys. Conf. Ser. 36, 1560007 (2015).
- J. Yan and C. Beck, Chaos, Solitons & Fractals: X 5, 100035 (2020).
- M. Barnsley, Fractals everywhere, 2nd ed. (Academic Press, Boston, 1993).