Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Zeroth order Descent with Structured Directions (2206.05124v3)

Published 10 Jun 2022 in math.OC and cs.LG

Abstract: We introduce and analyze Structured Stochastic Zeroth order Descent (S-SZD), a finite difference approach that approximates a stochastic gradient on a set of $l\leq d$ orthogonal directions, where $d$ is the dimension of the ambient space. These directions are randomly chosen and may change at each step. For smooth convex functions we prove almost sure convergence of the iterates and a convergence rate on the function values of the form $O( (d/l) k{-c})$ for every $c<1/2$, which is arbitrarily close to the one of Stochastic Gradient Descent (SGD) in terms of number of iterations. Our bound shows the benefits of using $l$ multiple directions instead of one. For non-convex functions satisfying the Polyak-{\L}ojasiewicz condition, we establish the first convergence rates for stochastic structured zeroth order algorithms under such an assumption. We corroborate our theoretical findings with numerical simulations where the assumptions are satisfied and on the real-world problem of hyper-parameter optimization in machine learning, achieving competitive practical performance.

Citations (6)

Summary

We haven't generated a summary for this paper yet.