Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Critical Review of Physics-Informed Machine Learning Applications in Subsurface Energy Systems (2308.04457v1)

Published 6 Aug 2023 in cs.LG and stat.ML

Abstract: Machine learning has emerged as a powerful tool in various fields, including computer vision, natural language processing, and speech recognition. It can unravel hidden patterns within large data sets and reveal unparalleled insights, revolutionizing many industries and disciplines. However, machine and deep learning models lack interpretability and limited domain-specific knowledge, especially in applications such as physics and engineering. Alternatively, physics-informed machine learning (PIML) techniques integrate physics principles into data-driven models. By combining deep learning with domain knowledge, PIML improves the generalization of the model, abidance by the governing physical laws, and interpretability. This paper comprehensively reviews PIML applications related to subsurface energy systems, mainly in the oil and gas industry. The review highlights the successful utilization of PIML for tasks such as seismic applications, reservoir simulation, hydrocarbons production forecasting, and intelligent decision-making in the exploration and production stages. Additionally, it demonstrates PIML's capabilities to revolutionize the oil and gas industry and other emerging areas of interest, such as carbon and hydrogen storage; and geothermal systems by providing more accurate and reliable predictions for resource management and operational efficiency.

Citations (19)

Summary

We haven't generated a summary for this paper yet.