Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems (2306.13867v1)

Published 24 Jun 2023 in eess.SY, cs.LG, and cs.SY

Abstract: Physics-informed machine learning (PIML) is a set of methods and tools that systematically integrate ML algorithms with physical constraints and abstract mathematical models developed in scientific and engineering domains. As opposed to purely data-driven methods, PIML models can be trained from additional information obtained by enforcing physical laws such as energy and mass conservation. More broadly, PIML models can include abstract properties and conditions such as stability, convexity, or invariance. The basic premise of PIML is that the integration of ML and physics can yield more effective, physically consistent, and data-efficient models. This paper aims to provide a tutorial-like overview of the recent advances in PIML for dynamical system modeling and control. Specifically, the paper covers an overview of the theory, fundamental concepts and methods, tools, and applications on topics of: 1) physics-informed learning for system identification; 2) physics-informed learning for control; 3) analysis and verification of PIML models; and 4) physics-informed digital twins. The paper is concluded with a perspective on open challenges and future research opportunities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (216)
  1. B. Balaji, S. Mallya, S. Genc, S. Gupta, L. Dirac, V. Khare, G. Roy, T. Sun, Y. Tao, B. Townsend, E. Calleja, S. Muralidhara, and D. Karuppasamy, “Deepracer: Autonomous racing platform for experimentation with sim2real reinforcement learning,” in ICRA 2020, 2020.
  2. S. L. Brunton, J. Nathan Kutz, K. Manohar, A. Y. Aravkin, K. Morgansen, J. Klemisch, N. Goebel, J. Buttrick, J. Poskin, A. W. Blom-Schieber, T. Hogan, and D. McDonald, “Data-driven aerospace engineering: Reframing the industry with machine learning,” AIAA Journal, vol. 59, no. 8, pp. 2820–2847, 2021.
  3. R. Nian, J. Liu, and B. Huang, “A review on reinforcement learning: Introduction and applications in industrial process control,” Computers & Chemical Engineering, vol. 139, p. 106886, 2020.
  4. P. L. Donti and J. Z. Kolter, “Machine learning for sustainable energy systems,” Annual Review of Environment and Resources, vol. 46, no. 1, pp. 719–747, 2021.
  5. OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan, W. Zaremba, and L. Zhang, “Solving rubik’s cube with a robot hand,” CoRR, vol. abs/1910.07113, 2019.
  6. G. Dulac-Arnold, D. J. Mankowitz, and T. Hester, “Challenges of real-world reinforcement learning,” CoRR, vol. abs/1904.12901, 2019.
  7. G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physics-informed machine learning,” Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, Jun. 2021.
  8. R. Wang, “Physics-guided deep learning for dynamical systems: A survey,” CoRR, vol. abs/2107.01272, 2021.
  9. C. Legaard, T. Schranz, G. Schweiger, J. Drgoňa, B. Falay, C. Gomes, A. Iosifidis, M. Abkar, and P. Larsen, “Constructing neural network based models for simulating dynamical systems,” ACM Comput. Surv., vol. 55, no. 11, feb 2023.
  10. C. Rackauckas, A. Edelman, K. Fischer, M. Innes, E. Saba, V. B. Shah, and W. Tebbutt, “Generalized physics-informed learning through language-wide differentiable programming,” in AAAI Spring Symposium: MLPS, 2020.
  11. R. G. Krishnan, U. Shalit, and D. Sontag, “Structured inference networks for nonlinear state space models,” in AAAI, 2017.
  12. S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and T. Januschowski, “Deep state space models for time series forecasting,” in Advances in Neural Information Processing Systems 31.   Curran Associates, Inc., 2018, pp. 7785–7794.
  13. E. Yeung, S. Kundu, and N. Hodas, “Learning deep neural network representations for Koopman operators of nonlinear dynamical systems,” in 2019 American Control Conference (ACC).   IEEE, 2019, pp. 4832–4839.
  14. B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear embeddings of nonlinear dynamics,” Nature Communications, vol. 9, no. 1, p. 4950, Nov. 2018.
  15. Jeen-Shing Wang and Yi-Chung Chen, “A hammerstein-wiener recurrent neural network with universal approximation capability,” in 2008 IEEE International Conference on Systems, Man and Cybernetics, Oct 2008, pp. 1832–1837.
  16. O. P. Ogunmolu, X. Gu, S. B. Jiang, and N. R. Gans, “Nonlinear systems identification using deep dynamic neural networks,” CoRR, vol. abs/1610.01439, 2016.
  17. A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. A. Riedmiller, R. Hadsell, and P. W. Battaglia, “Graph networks as learnable physics engines for inference and control,” CoRR, vol. abs/1806.01242, 2018.
  18. T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, “Neural relational inference for interacting systems,” in Proceedings of the 35th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, vol. 80.   PMLR, 10–15 Jul 2018, pp. 2688–2697.
  19. S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from data by sparse identification of nonlinear dynamical systems,” Proceedings of the National Academy of Sciences, vol. 113, no. 15, pp. 3932–3937, mar 2016.
  20. ——, “Sparse identification of nonlinear dynamics with control (sindyc),” IFAC-PapersOnLine, vol. 49, no. 18, pp. 710–715, 2016, 10th IFAC Symposium on Nonlinear Control Systems NOLCOS 2016.
  21. S. Vijayshankar, A. Chakrabarty, P. Grover, and S. Nabi, “Co-design of reduced-order models and observers from thermo-fluid data,” IFAC Journal of Systems and Control, vol. 19, p. 100181, 2022.
  22. Z. Zhang, Y. Zhao, J. Liu, S. Wang, R. Tao, R. Xin, and J. Zhang, “A general deep learning framework for network reconstruction and dynamics learning,” Applied Network Science, vol. 4, no. 1, nov 2019.
  23. L. Di Natale, B. Svetozarevic, P. Heer, and C. Jones, “Physically consistent neural networks for building thermal modeling: Theory and analysis,” Applied Energy, vol. 325, p. 119806, 2022.
  24. M. Chen and C. J. Tomlin, “Hamilton–jacobi reachability: Some recent theoretical advances and applications in unmanned airspace management,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 333–358, 2018.
  25. A. Quaglino, M. Gallieri, J. Masci, and J. Koutník, “SNODE: Spectral discretization of neural ODEs for system identification,” 2020.
  26. S. Massaroli, M. Poli, S. Sonoda, T. Suzuki, J. Park, A. Yamashita, and H. Asama, “Differentiable multiple shooting layers,” CoRR, vol. abs/2106.03885, 2021.
  27. E. M. Turan and J. Jäschke, “Multiple shooting for training neural differential equations on time series,” IEEE Control Systems Letters, vol. 6, pp. 1897–1902, 2022.
  28. A. Schlaginhaufen, P. Wenk, A. Krause, and F. Dörfler, “Learning stable deep dynamics models for partially observed or delayed dynamical systems,” CoRR, vol. abs/2110.14296, 2021.
  29. R. Dandekar, V. Dixit, M. Tarek, A. Garcia-Valadez, and C. Rackauckas, “Bayesian neural ordinary differential equations,” CoRR, vol. abs/2012.07244, 2020.
  30. P. Kidger, J. Foster, X. Li, H. Oberhauser, and T. J. Lyons, “Neural sdes as infinite-dimensional gans,” CoRR, vol. abs/2102.03657, 2021.
  31. J. Jia and A. R. Benson, “Neural jump stochastic differential equations,” CoRR, vol. abs/1905.10403, 2019.
  32. C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, A. Ramadhan, and A. Edelman, “Universal differential equations for scientific machine learning,” Jan. 2020.
  33. J. Koch, Z. Chen, A. Tuor, J. Drgona, and D. Vrabie, “Structural inference of networked dynamical systems with universal differential equations,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 33, no. 2, p. 023103, 2023.
  34. L.-P. A. C. Xhonneux, M. Qu, and J. Tang, “Continuous graph neural networks,” in Proceedings of the 37th International Conference on Machine Learning, ser. ICML’20.   JMLR.org, 2020.
  35. M. Poli, S. Massaroli, J. Park, A. Yamashita, H. Asama, and J. Park, “Graph neural ordinary differential equations,” CoRR, vol. abs/1911.07532, 2019.
  36. S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural networks,” CoRR, vol. abs/1906.01563, 2019.
  37. Y. D. Zhong, B. Dey, and A. Chakraborty, “Symplectic ode-net: Learning hamiltonian dynamics with control,” in International Conference on Learning Representations, 2020.
  38. M. Lutter, C. Ritter, and J. Peters, “Deep lagrangian networks: Using physics as model prior for deep learning,” CoRR, vol. abs/1907.04490, 2019.
  39. M. D. Cranmer, S. Greydanus, S. Hoyer, P. W. Battaglia, D. N. Spergel, and S. Ho, “Lagrangian neural networks,” CoRR, vol. abs/2003.04630, 2020.
  40. A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, and P. Battaglia, “Hamiltonian graph networks with ode integrators,” 2019.
  41. Y. D. Zhong, B. Dey, and A. Chakraborty, “Dissipative symODEN: Encoding hamiltonian dynamics with dissipation and control into deep learning,” in ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations, 2019.
  42. M. Finzi, K. A. Wang, and A. G. Wilson, “Simplifying hamiltonian and lagrangian neural networks via explicit constraints,” CoRR, vol. abs/2010.13581, 2020.
  43. S. Eidnes, A. J. Stasik, C. Sterud, E. Bøhn, and S. Riemer-Sørensen, “Pseudo-hamiltonian neural networks with state-dependent external forces,” Physica D: Nonlinear Phenomena, vol. 446, p. 133673, 2023.
  44. Y. D. Zhong, B. Dey, and A. Chakraborty, “Extending lagrangian and hamiltonian neural networks with differentiable contact models,” in Advances in Neural Information Processing Systems, 2021.
  45. Y. D. Zhong and N. Leonard, “Unsupervised learning of lagrangian dynamics from images for prediction and control,” in Advances in Neural Information Processing Systems, vol. 33.   Curran Associates, Inc., 2020, pp. 10 741–10 752.
  46. G. Manek and J. Z. Kolter, “Learning stable deep dynamics models,” CoRR, vol. abs/2001.06116, 2020.
  47. J. Drgona, A. Tuor, S. Vasisht, and D. Vrabie, “Dissipative deep neural dynamical systems,” IEEE Open Journal of Control Systems, vol. 1, pp. 100–112, 2022.
  48. A. Tuor, J. Drgona, and D. Vrabie, “Constrained neural ordinary differential equations with stability guarantees,” arXiv preprint arXiv:2004.10883, 2020.
  49. Z. Mhammedi, A. Hellicar, A. Rahman, and J. Bailey, “Efficient orthogonal parametrisation of recurrent neural networks using householder reflections,” in International Conference on Machine Learning, 2017, pp. 2401–2409.
  50. K. Jia, S. Li, Y. Wen, T. Liu, and D. Tao, “Orthogonal deep neural networks,” IEEE transactions on pattern analysis and machine intelligence, 2019.
  51. J. Zhang, Q. Lei, and I. S. Dhillon, “Stabilizing gradients for deep neural networks via efficient SVD parameterization,” Proceedings of the 35th International Conference on Machine Learning, 2018.
  52. E. Haber and L. Ruthotto, “Stable architectures for deep neural networks,” Inverse Problems, vol. 34, no. 1, p. 014004, 2017.
  53. B. Chang, M. Chen, E. Haber, and E. H. Chi, “AntisymmetricRNN: A dynamical system view on recurrent neural networks,” in International Conference on Learning Representations, 2019.
  54. M. Lechner, R. Hasani, D. Rus, and R. Grosu, “Gershgorin loss stabilizes the recurrent neural network compartment of an end-to-end robot learning scheme,” in 2020 International Conference on Robotics and Automation (ICRA). IEEE, 2020.
  55. G. Kerg, K. Goyette, M. P. Touzel, G. Gidel, E. Vorontsov, Y. Bengio, and G. Lajoie, “Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics,” in Advances in Neural Information Processing Systems, 2019, pp. 13 613–13 623.
  56. E. Skomski, S. Vasisht, C. Wight, A. Tuor, J. Drgoňa, and D. Vrabie, “Constrained block nonlinear neural dynamical models,” in 2021 American Control Conference (ACC), 2021, pp. 3993–4000.
  57. J. Drgoňa, A. R. Tuor, V. Chandan, and D. L. Vrabie, “Physics-constrained deep learning of multi-zone building thermal dynamics,” Energy and Buildings, vol. 243, p. 110992, 2021.
  58. N. B. Erichson, M. Muehlebach, and M. W. Mahoney, “Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction,” May 2019.
  59. G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar, Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing control using learned dynamics,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 9784–9790.
  60. S. Seo and Y. Liu, “Differentiable physics-informed graph networks,” CoRR, vol. abs/1902.02950, 2019.
  61. A. Pal, Y. Ma, V. Shah, and C. V. Rackauckas, “Opening the blackbox: Accelerating neural differential equations by regularizing internal solver heuristics,” in Proceedings of the 38th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, vol. 139.   PMLR, 18–24 Jul 2021, pp. 8325–8335.
  62. I. D. J. Rodriguez, A. D. Ames, and Y. Yue, “Lyanet: A lyapunov framework for training neural odes,” CoRR, vol. abs/2202.02526, 2022.
  63. C. Finlay, J.-H. Jacobsen, L. Nurbekyan, and A. M. Oberman, “How to train your neural ODE: The world of Jacobian and kinetic regularization,” 2020.
  64. J. Kelly, J. Bettencourt, M. J. Johnson, and D. Duvenaud, “Learning differential equations that are easy to solve,” 2020.
  65. L. Hewing, K. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-based model predictive control: Toward safe learning in control,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 3, no. 1, pp. 269–296, 2020.
  66. I. Lenz, R. A. Knepper, and A. Saxena, “Deepmpc: Learning deep latent features for model predictive control,” in Robotics: Science and Systems XI, Sapienza University of Rome, Rome, Italy, July 13-17, 2015, 2015.
  67. J. Nicodemus, J. Kneifl, J. Fehr, and B. Unger, “Physics-informed neural networks-based model predictive control for multi-link manipulators,” 2021.
  68. E. Kaiser, J. N. Kutz, and S. L. Brunton, “Sparse identification of nonlinear dynamics for model predictive control in the low-data limit,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 474, no. 2219, p. 20180335, 2018.
  69. A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably safe and robust learning-based model predictive control,” Automatica, vol. 49, no. 5, pp. 1216–1226, 2013.
  70. P. Bouffard, A. Aswani, and C. Tomlin, “Learning-based model predictive control on a quadrotor: Onboard implementation and experimental results,” in 2012 IEEE International Conference on Robotics and Automation, 2012, pp. 279–284.
  71. A. Carron, E. Arcari, M. Wermelinger, L. Hewing, M. Hutter, and M. N. Zeilinger, “Data-driven model predictive control for trajectory tracking with a robotic arm,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3758–3765, 2019.
  72. L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive control using gaussian process regression,” IEEE Transactions on Control Systems Technology, vol. 28, no. 6, pp. 2736–2743, 2020.
  73. E. T. Maddalena, P. Scharnhorst, Y. Jiang, and C. N. Jones, “KPC: Learning-based model predictive control with deterministic guarantees,” in Proceedings of the 3rd Conference on Learning for Dynamics and Control, ser. Proceedings of Machine Learning Research, vol. 144.   PMLR, 07 – 08 June 2021, pp. 1015–1026.
  74. F. Bünning, B. Huber, A. Schalbetter, A. Aboudonia, M. Hudoba de Badyn, P. Heer, R. S. Smith, and J. Lygeros, “Physics-informed linear regression is competitive with two machine learning methods in residential building mpc,” Applied Energy, vol. 310, p. 118491, 2022.
  75. Y. Long and M. Bayoumi, “Feedback stabilization: Control lyapunov functions modelled by neural networks,” in Proceedings of 32nd IEEE Conference on Decision and Control.   IEEE, 1993, pp. 2812–2814.
  76. S. M. Richards, F. Berkenkamp, and A. Krause, “The Lyapunov neural network: Adaptive stability certification for safe learning of dynamic systems,” CoRR, vol. abs/1808.00924, 2018.
  77. M. Mittal, M. Gallieri, A. Quaglino, S. S. M. Salehian, and J. Koutník, “Neural lyapunov model predictive control: Learning safe global controllers from sub-optimal examples,” arXiv preprint arXiv:2002.10451, 2020.
  78. S. Mukherjee, J. Drgoňa, A. Tuor, M. Halappanavar, and D. Vrabie, “Neural lyapunov differentiable predictive control,” in 2022 IEEE 61st Conference on Decision and Control (CDC), 2022, pp. 2097–2104.
  79. L. Grüne, “Computing Lyapunov functions using deep neural networks,” Journal of Computational Dynamics, vol. 8, no. 2, p. 131, 2021.
  80. K. Long, C. Qian, J. Cortés, and N. Atanasov, “Learning barrier functions with memory for robust safe navigation,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4931–4938, 2021.
  81. A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni, “Learning control barrier functions from expert demonstrations,” in 2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 3717–3724.
  82. Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan, “Learning safe multi-agent control with decentralized neural barrier certificates,” in International Conference on Learning Representations, 2021.
  83. C. Dawson, Z. Qin, S. Gao, and C. Fan, “Safe nonlinear control using robust neural lyapunov-barrier functions,” in Proceedings of the 5th Conference on Robot Learning, ser. Proceedings of Machine Learning Research, vol. 164.   PMLR, 08–11 Nov 2022, pp. 1724–1735.
  84. B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differentiable mpc for end-to-end planning and control,” in Advances in Neural Information Processing Systems, vol. 31.   Curran Associates, Inc., 2018.
  85. M. Okada, L. Rigazio, and T. Aoshima, “Path integral networks: End-to-end differentiable optimal control,” CoRR, vol. abs/1706.09597, 2017.
  86. M. Pereira, D. D. Fan, G. N. An, and E. A. Theodorou, “Mpc-inspired neural network policies for sequential decision making,” CoRR, vol. abs/1802.05803, 2018.
  87. M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V. B. Shah, and W. Tebbutt, “A differentiable programming system to bridge machine learning and scientific computing,” CoRR, vol. abs/1907.07587, 2019.
  88. S. East, M. Gallieri, J. Masci, J. Koutník, and M. Cannon, “Infinite-horizon differentiable model predictive control,” ArXiv, vol. abs/2001.02244, 2020.
  89. J. Drgoňa, K. Kiš, A. Tuor, D. Vrabie, and M. Klaučo, “Differentiable predictive control: Deep learning alternative to explicit model predictive control for unknown nonlinear systems,” Journal of Process Control, vol. 116, pp. 80–92, 2022.
  90. J. Drgoňa, S. Mukherjee, A. Tuor, M. Halappanavar, and D. Vrabie, “Learning stochastic parametric differentiable predictive control policies,” 2022.
  91. D. Tabas and B. Zhang, “Safe and efficient model predictive control using neural networks: An interior point approach,” in 2022 IEEE 61st Conference on Decision and Control (CDC), 2022, pp. 1142–1147.
  92. P. L. Donti, M. Roderick, M. Fazlyab, and J. Z. Kolter, “Enforcing robust control guarantees within neural network policies,” CoRR, vol. abs/2011.08105, 2020.
  93. W. Xiao, T.-H. Wang, M. Chahine, A. Amini, R. Hasani, and D. Rus, “Differentiable control barrier functions for vision-based end-to-end autonomous driving,” 2022.
  94. S. Yang, S. Chen, V. M. Preciado, and R. Mangharam, “Differentiable safe controller design through control barrier functions,” IEEE Control Systems Letters, vol. 7, pp. 1207–1212, 2023.
  95. P. Karkus, B. Ivanovic, S. Mannor, and M. Pavone, “Diffstack: A differentiable and modular control stack for autonomous vehicles,” in 6th Annual Conference on Robot Learning, 2022.
  96. J. Xu, T. Chen, L. Zlokapa, M. Foshey, W. Matusik, S. Sueda, and P. Agrawal, “An End-to-End Differentiable Framework for Contact-Aware Robot Design,” in Proceedings of Robotics: Science and Systems, Virtual, July 2021.
  97. J. Degrave, M. Hermans, J. Dambre, and F. Wyffels, “A differentiable physics engine for deep learning in robotics,” Frontiers in Neurorobotics, vol. 13, 2016.
  98. B. Chen, Z. Cai, and M. Bergés, “Gnu-rl: A precocial reinforcement learning solution for building hvac control using a differentiable mpc policy,” in Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, ser. BuildSys ’19.   New York, NY, USA: Association for Computing Machinery, 2019, p. 316–325.
  99. J. Drgoňa, A. Tuor, E. Skomski, S. Vasisht, and D. Vrabie, “Deep learning explicit differentiable predictive control laws for buildings,” IFAC-PapersOnLine, vol. 54, no. 6, pp. 14–19, 2021, 7th IFAC Conference on Nonlinear Model Predictive Control NMPC 2021.
  100. S. Son, Y.-L. Qiao, J. Sewall, and M. C. Lin, “Differentiable hybrid traffic simulation,” ACM Transactions on Graphics (TOG), 2022.
  101. T. Asikis, L. Böttcher, and N. Antulov-Fantulin, “Neural ordinary differential equation control of dynamics on graphs,” Phys. Rev. Res., vol. 4, p. 013221, Mar 2022.
  102. K. M. Jatavallabhula, M. Macklin, F. Golemo, V. Voleti, L. Petrini, M. Weiss, B. Considine, J. Parent-Levesque, K. Xie, K. Erleben, L. Paull, F. Shkurti, D. Nowrouzezahrai, and S. Fidler, “gradsim: Differentiable simulation for system identification and visuomotor control,” International Conference on Learning Representations, 2021.
  103. A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter, “Differentiable convex optimization layers,” in Advances in Neural Information Processing Systems, 2019.
  104. P. Gradu, J. Hallman, D. Suo, A. Yu, N. Agarwal, U. Ghai, K. Singh, C. Zhang, A. Majumdar, and E. Hazan, “Deluca–a differentiable control library: Environments, methods, and benchmarking,” Differentiable Computer Vision, Graphics, and Physics in Machine Learning (Neurips 2020 Workshop), 2020.
  105. L. Pineda, T. Fan, M. Monge, S. Venkataraman, P. Sodhi, R. T. Chen, J. Ortiz, D. DeTone, A. Wang, S. Anderson, J. Dong, B. Amos, and M. Mukadam, “Theseus: A Library for Differentiable Nonlinear Optimization,” Advances in Neural Information Processing Systems, 2022.
  106. A. Tuor, J. Drgona, M. Skomski, J. Koch, Z. Chen, S. Dernbach, C. M. Legaard, and D. Vrabie, “NeuroMANCER: Neural Modules with Adaptive Nonlinear Constraints and Efficient Regularizations,” 2022.
  107. K. Um, R. Brand, Y. R. Fei, P. Holl, and N. Thuerey, “Solver-in-the-loop: Learning from differentiable physics to interact with iterative pde-solvers,” in Proceedings of the 34th International Conference on Neural Information Processing Systems, ser. NIPS’20.   Red Hook, NY, USA: Curran Associates Inc., 2020.
  108. P. Holl, N. Thuerey, and V. Koltun, “Learning to control pdes with differentiable physics,” in International Conference on Learning Representations, 2020.
  109. K. Wabersich and M. N. Zeilinger, “A predictive safety filter for learning-based control of constrained nonlinear dynamical systems,” Automatica, vol. 129, p. 109597, 2021.
  110. B. Tearle, K. Wabersich, A. Carron, and M. N. Zeilinger, “A predictive safety filter for learning-based racing control,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7635–7642, 2021.
  111. A. P. Vinod, S. Safaoui, A. Chakrabarty, R. Quirynen, N. Yoshikawa, and S. Di Cairano, “Safe multi-agent motion planning via filtered reinforcement learning,” in 2022 International Conference on Robotics and Automation (ICRA), 2022, pp. 7270–7276.
  112. T. Gurriet, M. Mote, A. D. Ames, and E. Feron, “An online approach to active set invariance,” in 2018 IEEE Conference on Decision and Control (CDC), 2018, pp. 3592–3599.
  113. T. Mannucci, E.-J. van Kampen, C. de Visser, and Q. Chu, “Safe exploration algorithms for reinforcement learning controllers,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 4, pp. 1069–1081, 2018.
  114. K. Wabersich and M. N. Zeilinger, “Linear model predictive safety certification for learning-based control,” in 2018 IEEE Conference on Decision and Control (CDC), 2018, pp. 7130–7135.
  115. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in 2019 18th European Control Conference (ECC), 2019, pp. 3420–3431.
  116. W. S. Cortez, J. Drgona, A. Tuor, M. Halappanavar, and D. Vrabie, “Differentiable predictive control with safety guarantees: A control barrier function approach,” in 2022 IEEE 61st Conference on Decision and Control (CDC), 2022, pp. 932–938.
  117. A. Chakrabarty, C. Danielson, S. D. Cairano, and A. Raghunathan, “Active learning for estimating reachable sets for systems with unknown dynamics,” IEEE Transactions on Cybernetics, vol. 52, no. 4, pp. 2531–2542, 2022.
  118. K. Wabersich and M. N. Zeilinger, “Predictive control barrier functions: Enhanced safety mechanisms for learning-based control,” IEEE Transactions on Automatic Control, pp. 1–1, 2022.
  119. B. Karg and S. Lucia, “Stability and feasibility of neural network-based controllers via output range analysis,” in IEEE Conference on Decision and Control, 2020, pp. 4947–4954.
  120. P. L. Donti, M. Roderick, M. Fazlyab, and J. Z. Kolter, “Enforcing robust control guarantees within neural network policies,” in International Conference on Learning Representations, 2021, pp. 1–26.
  121. L. Di Natale, B. Svetozarevic, P. Heer, and C. N. Jones, “Near-optimal deep reinforcement learning policies from data for zone temperature control,” 2022.
  122. M. P. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and data-efficient approach to policy search,” in Proceedings of the 28th International Conference on International Conference on Machine Learning, ser. ICML’11.   Madison, WI, USA: Omnipress, 2011, p. 465–472.
  123. P. Zhao and Y. Liu, “Physics informed deep reinforcement learning for aircraft conflict resolution,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 8288–8301, 2022.
  124. Y. Du, Q. Huang, R. Huang, T. Yin, J. Tan, W. Yu, and X. Li, “Physics-informed evolutionary strategy based control for mitigating delayed voltage recovery,” IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 3516–3527, 2022.
  125. W. Cai, H. N. Esfahani, A. B. Kordabad, and S. Gros, “Optimal management of the peak power penalty for smart grids using mpc-based reinforcement learning,” in 2021 60th IEEE Conference on Decision and Control (CDC), 2021, pp. 6365–6370.
  126. S. Gros and M. Zanon, “Data-driven economic nmpc using reinforcement learning,” IEEE Transactions on Automatic Control, vol. 65, no. 2, pp. 636–648, 2020.
  127. M. Zanon and S. Gros, “Safe reinforcement learning using robust mpc,” IEEE Transactions on Automatic Control, vol. 66, no. 8, pp. 3638–3652, 2021.
  128. J. Arroyo, C. Manna, F. Spiessens, and L. Helsen, “Reinforced model predictive control (rl-mpc) for building energy management,” Applied Energy, vol. 309, p. 118346, 2022.
  129. H. Zhang, Z. Wang, and D. Liu, “A comprehensive review of stability analysis of continuous-time recurrent neural networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 7, 2014.
  130. R. Engelken, F. Wolf, and L. Abbott, “Lyapunov spectra of chaotic recurrent neural networks,” arXiv preprint arXiv:2006.02427, 2020.
  131. R. Vogt, M. Puelma Touzel, E. Shlizerman, and G. Lajoie, “On lyapunov exponents for rnns: Understanding information propagation using dynamical systems tools,” Frontiers in Applied Mathematics and Statistics, vol. 8, 2022.
  132. B. Güler, A. Laignelet, and P. Parpas, “Towards robust and stable deep learning algorithms for forward backward stochastic differential equations,” 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 2019.
  133. A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo, “Formal synthesis of lyapunov neural networks,” IEEE Control Systems Letters, vol. 5, no. 3, pp. 773–778, 2021.
  134. S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado, “Learning region of attraction for nonlinear systems,” in 2021 60th IEEE Conference on Decision and Control (CDC), 2021, pp. 6477–6484.
  135. S. A. Deka, A. M. Valle, and C. J. Tomlin, “Koopman-based neural lyapunov functions for general attractors,” 2022.
  136. A. Lederer and S. Hirche, “Local asymptotic stability analysis and region of attraction estimation with gaussian processes,” in IEEE Conference on Decision and Control, 2019, pp. 1766–1771.
  137. F. Bonassi, E. Terzi, M. Farina, and R. Scattolini, “Lstm neural networks: Input to state stability and probabilistic safety verification,” in Proceedings of the 2nd Conference on Learning for Dynamics and Control, ser. Proceedings of Machine Learning Research, vol. 120.   PMLR, 10–11 Jun 2020, pp. 85–94.
  138. M. Revay and I. Manchester, “Contracting implicit recurrent neural networks: Stable models with improved trainability,” in Proceedings of the 2nd Conference on Learning for Dynamics and Control, ser. Proceedings of Machine Learning Research, vol. 120.   PMLR, 10–11 Jun 2020, pp. 393–403.
  139. M. Revay, R. Wang, and I. R. Manchester, “A convex parameterization of robust recurrent neural networks,” IEEE Control Systems Letters, vol. 5, no. 4, pp. 1363–1368, 2021.
  140. S. Jafarpour, A. Davydov, A. Proskurnikov, and F. Bullo, “Robust implicit networks via non-Euclidean contractions,” in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 9857–9868.
  141. K. Scaman and A. Virmaux, “Lipschitz regularity of deep neural networks: Analysis and efficient estimation,” in Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018, pp. 3839–3848.
  142. A. Chakrabarty, D. K. Jha, and Y. Wang, “Data-driven control policies for partially known systems via kernelized lipschitz learning,” in 2019 American Control Conference (ACC).   IEEE, 2019, pp. 4192–4197.
  143. A. Chakrabarty, D. K. Jha, G. T. Buzzard, Y. Wang, and K. G. Vamvoudakis, “Safe approximate dynamic programming via kernelized lipschitz estimation,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 405–419, 2020.
  144. P. Pauli, A. Koch, J. Berberich, P. Kohler, and F. Allgöwer, “Training robust neural networks using lipschitz bounds,” IEEE Control Systems Letters, vol. 6, pp. 121–126, 2022.
  145. M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and robustness analysis of neural networks via quadratic constraints and semidefinite programming,” IEEE Transactions on Automatic Control, vol. 67, no. 1, pp. 1–15, 2022.
  146. N. B. Erichson, O. Azencot, A. Queiruga, L. Hodgkinson, and M. W. Mahoney, “Lipschitz recurrent neural networks,” in International Conference on Learning Representations, 2021.
  147. A. Chakrabarty, A. Zemouche, R. Rajamani, and M. Benosman, “Robust data-driven neuro-adaptive observers with lipschitz activation functions,” in 2019 IEEE 58th Conference on Decision and Control (CDC).   IEEE, 2019, pp. 2862–2867.
  148. S. Wang, A. rahman Mohamed, R. Caruana, J. A. Bilmes, M. Philipose, M. Richardson, K. Geras, G. Urban, and Özlem Aslan, “Analysis of deep neural networks with extended data jacobian matrix,” in ICML, 2016, pp. 718–726.
  149. T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev, “Ai2: Safety and robustness certification of neural networks with abstract interpretation,” in 2018 IEEE Symposium on Security and Privacy (SP).   IEEE, 2018, pp. 3–18.
  150. K. Jia and M. Rinard, “Efficient Exact Verification of Binarized Neural Networks,” in Advances in Neural Information Processing Systems, vol. 33, 2020, pp. 1782–1795.
  151. V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with mixed integer programming,” in International Conference on Learning Representations, 2019.
  152. M. Hertneck, J. Köhler, S. Trimpe, and F. Allgöwer, “Learning an approximate model predictive controller with guarantees,” IEEE Control Systems Letters, vol. 2, no. 3, pp. 543–548, 2018.
  153. W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of the American Statistical Association, vol. 58, no. 301, pp. 13–30, 1963.
  154. M. Jin and J. Lavaei, “Stability-certified reinforcement learning: A control-theoretic perspective,” IEEE Access, vol. 8, pp. 229 086–229 100, 2020.
  155. F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, “Safe model-based reinforcement learning with stability guarantees,” ser. NIPS’17.   Red Hook, NY, USA: Curran Associates Inc., 2017, p. 908–919.
  156. F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause, “Safe learning of regions of attraction for uncertain, nonlinear systems with Gaussian processes,” in IEEE Conference on Decision and Control, 2016, pp. 4661–4666.
  157. M. Marchi, J. Bunton, B. Gharesifard, and P. Tabuada, “Safety and Stability Guarantees for Control Loops With Deep Learning Perception,” IEEE Control Systems Letters, vol. 6, pp. 1286–1291, 2022.
  158. H. Tsukamoto, S.-J. Chung, J.-J. Slotine, and C. Fan, “A Theoretical Overview of Neural Contraction Metrics for Learning-based Control with Guaranteed Stability,” in IEEE Conference on Decision and Control, 2021, pp. 2949–2954.
  159. F. Fabiani and P. J. Goulart, “Reliably-stabilizing piecewise-affine neural network controllers,” 2021, arXiv:2111.07183.
  160. R. Schwan, C. N. Jones, and D. Kuhn, “Stability verification of neural network controllers using mixed-integer programming,” 2022, arXiv:2206.13374.
  161. H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake, “Lyapunov-stable neural-network control,” in Robotics: Science and Systems XVII, Virtual Event, July 12-16, 2021, 2021.
  162. X. Zhang, M. Bujarbaruah, and F. Borrelli, “Near-optimal rapid mpc using neural networks: A primal-dual policy learning framework,” IEEE Transactions on Control Systems Technology, vol. 29, no. 5, pp. 2102–2114, 2021.
  163. Y. Zhang and X. Xu, “Safety Verification of Neural Feedback Systems Based on Constrained Zonotopes,” 2022.
  164. E. T. Maddalena, M. W. F. Specq, V. L. Wisniewski, and C. N. Jones, “Embedded PWM predictive control of DC-DC power converters via piecewise-affine neural networks,” IEEE Open Journal of the Industrial Electronics Society, vol. 2, pp. 199–206, 2021.
  165. D. Mayne, M. Seron, and S. Raković, “Robust model predictive control of constrained linear systems with bounded disturbances,” Automatica, vol. 41, no. 2, pp. 219–224, 2005.
  166. S. A. Niederer, M. S. Sacks, M. Girolami, and K. Willcox, “Scaling digital twins from the artisanal to the industrial,” Nature Computational Science, vol. 1, no. 5, pp. 313–320, 2021.
  167. P. Fritzson, “Modelica—A cyber-physical modeling language and the OpenModelica environment,” in 2011 7th International Wireless Communications and Mobile Computing Conference.   IEEE, 2011, pp. 1648–1653.
  168. M. Wetter, W. Zuo, T. S. Nouidui, and X. Pang, “Modelica buildings library,” Journal of Building Performance Simulation, vol. 7, no. 4, pp. 253–270, 2014.
  169. J. E. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. M. Arblaster, S. Bates, G. Danabasoglu, J. Edwards et al., “The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability,” Bulletin of the American Meteorological Society, vol. 96, no. 8, pp. 1333–1349, 2015.
  170. S. McCamish and M. Romano, “Simulation of relative multiple spacecraft dynamics and control with MATLAB-SIMULINK and Satellite Tool Kit,” in AIAA Modeling and Simulation Technologies Conference and Exhibit, 2007, p. 6805.
  171. H. Jasak, A. Jemcov, Z. Tukovic et al., “OpenFOAM: A C++ library for complex physics simulations,” in International workshop on coupled methods in numerical dynamics, vol. 1000.   IUC Dubrovnik Croatia, 2007, pp. 1–20.
  172. Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu, D. Rus, and W. Matusik, “Chainqueen: A real-time differentiable physical simulator for soft robotics,” in 2019 International conference on robotics and automation (ICRA).   IEEE, 2019, pp. 6265–6271.
  173. J. A. Paulson, E. A. Buehler, and A. Mesbah, “Arbitrary polynomial chaos for uncertainty propagation of correlated random variables in dynamic systems,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 3548–3553, 2017.
  174. J. A. Paulson, M. Martin-Casas, and A. Mesbah, “Fast uncertainty quantification for dynamic flux balance analysis using non-smooth polynomial chaos expansions,” PLoS Computational Biology, vol. 15, no. 8, p. e1007308, 2019.
  175. M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational physics, vol. 378, pp. 686–707, 2019.
  176. J. Ma, P. Mahapatra, S. E. Zitney, L. T. Biegler, and D. C. Miller, “D-rm builder: A software tool for generating fast and accurate nonlinear dynamic reduced models from high-fidelity models,” Computers & Chemical Engineering, vol. 94, pp. 60–74, 2016.
  177. J. A. Paulson and A. Mesbah, “Shaping the closed-loop behavior of nonlinear systems under probabilistic uncertainty using arbitrary polynomial chaos,” in Proceedings of the IEEE Conference on Decision and Control.   IEEE, 2018, pp. 6307–6313.
  178. J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization of machine learning algorithms,” Advances in Neural Information Processing Systems, vol. 25, 2012.
  179. B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human out of the loop: A review of Bayesian optimization,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.
  180. P. I. Frazier, “A tutorial on Bayesian optimization,” arXiv preprint arXiv:1807.02811, 2018.
  181. D. Piga, M. Forgione, S. Formentin, and A. Bemporad, “Performance-oriented model learning for data-driven MPC design,” IEEE Control Systems Letters, vol. 3, no. 3, pp. 577–582, 2019.
  182. J. A. Paulson and A. Mesbah, “Data-driven scenario optimization for automated controller tuning with probabilistic performance guarantees,” IEEE Control Systems Letters, vol. 5, no. 4, pp. 1477–1482, 2020.
  183. F. Sorourifar, G. Makrygirgos, A. Mesbah, and J. A. Paulson, “A data-driven automatic tuning method for MPC under uncertainty using constrained Bayesian optimization,” IFAC-PapersOnLine, vol. 54, no. 3, pp. 243–250, 2021.
  184. Q. Lu, R. Kumar, and V. M. Zavala, “MPC controller tuning using Bayesian optimization techniques,” arXiv preprint arXiv:2009.14175, 2020.
  185. M. Fiducioso, S. Curi, B. Schumacher, M. Gwerder, and A. Krause, “Safe contextual Bayesian optimization for sustainable room temperature PID control tuning,” arXiv preprint arXiv:1906.12086, 2019.
  186. M. Khosravi, V. N. Behrunani, P. Myszkorowski, R. S. Smith, A. Rupenyan, and J. Lygeros, “Performance-driven cascade controller tuning with Bayesian optimization,” IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 1032–1042, 2021.
  187. G. Makrygiorgos, A. D. Bonzanini, V. Miller, and A. Mesbah, “Performance-oriented model learning for control via multi-objective bayesian optimization,” Computers & Chemical Engineering, vol. 162, p. 107770, 2022.
  188. J. A. Paulson, K. Shao, and A. Mesbah, “Probabilistically Robust bayesian optimization for data-driven design of arbitrary controllers with Gaussian process emulators,” in Proceedings of the IEEE Conference on Decision and Control.   IEEE, 2021, pp. 3633–3639.
  189. J. A. Paulson, G. Makrygiorgos, and A. Mesbah, “Adversarially robust Bayesian optimization for efficient auto-tuning of generic control structures under uncertainty,” AIChE Journal, vol. 68, no. 6, p. e17591, 2022.
  190. C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in International conference on machine learning.   PMLR, 2017, pp. 1126–1135.
  191. T. Elsken, B. Staffler, J. H. Metzen, and F. Hutter, “Meta-learning of neural architectures for few-shot learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 12 365–12 375.
  192. E. Arcari, M. V. Minniti, A. Scampicchio, A. Carron, F. Farshidian, M. Hutter, and M. N. Zeilinger, “Bayesian multi-task learning MPC for robotic mobile manipulation,” 2022.
  193. S. M. Richards, N. Azizan, J.-J. Slotine, and M. Pavone, “Adaptive-control-oriented meta-learning for nonlinear systems,” arXiv preprint arXiv:2103.04490, 2021.
  194. S. Zhan, G. Wichern, C. Laughman, A. Chong, and A. Chakrabarty, “Calibrating building simulation models using multi-source datasets and meta-learned Bayesian optimization,” Energy and Buildings, vol. 270, p. 112278, 2022.
  195. A. Chakrabarty, “Few-shot closed-loop performance optimization with Bayesian meta-learning,” in Proc. IEEE Conf. Dec. and Control (CDC), 2022, p. To appear.
  196. Y. Chen, Y. Zheng, and H. Samuelson, “Fast adaptation of thermal dynamics model for predictive control of hvac and natural ventilation using transfer learning with deep neural networks,” in 2020 American Control Conference (ACC), 2020, pp. 2345–2350.
  197. S. Xu, Y. Wang, Y. Wang, Z. O’Neill, and Q. Zhu, “One for many: Transfer learning for building HVAC control,” in Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, ser. BuildSys ’20.   New York, NY, USA: Association for Computing Machinery, 2020, p. 230–239.
  198. M. Poloczek, J. Wang, and P. Frazier, “Multi-information source optimization,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  199. K. Kandasamy, G. Dasarathy, J. Oliva, J. Schneider, and B. Poczos, “Multi-fidelity Gaussian process bandit optimisation,” Journal of Artificial Intelligence Research, vol. 66, pp. 151–196, 2019.
  200. J. Song, Y. Chen, and Y. Yue, “A general framework for multi-fidelity Bayesian optimization with gaussian processes,” in International Conference on Artificial Intelligence and Statistics.   PMLR, 2019, pp. 3158–3167.
  201. J. Wu, S. Toscano-Palmerin, P. I. Frazier, and A. G. Wilson, “Practical multi-fidelity Bayesian optimization for hyperparameter tuning,” in Uncertainty in Artificial Intelligence.   PMLR, 2020, pp. 788–798.
  202. F. Sorourifar, N. Choksi, and J. A. Paulson, “Computationally efficient integrated design and predictive control of flexible energy systems using multi-fidelity simulation-based Bayesian optimization,” Optimal Control Applications and Methods, 2021.
  203. M. Deitke, W. Han, A. Herrasti, A. Kembhavi, E. Kolve, R. Mottaghi, J. Salvador, D. Schwenk, E. VanderBilt, M. Wallingford, L. Weihs, M. Yatskar, and A. Farhadi, “RoboTHOR: An Open Simulation-to-Real Embodied AI Platform,” in CVPR, 2020.
  204. S. James, Z. Ma, D. Rovick Arrojo, and A. J. Davison, “Rlbench: The robot learning benchmark & learning environment,” IEEE Robotics and Automation Letters, 2020.
  205. C. Gan, J. Schwartz, S. Alter, D. Mrowca, M. Schrimpf, J. Traer, J. De Freitas, J. Kubilius, A. Bhandwaldar, N. Haber, M. Sano, K. Kim, E. Wang, M. Lingelbach, A. Curtis, K. Feigelis, D. M. Bear, D. Gutfreund, D. Cox, A. Torralba, J. J. DiCarlo, J. B. Tenenbaum, J. H. McDermott, and D. L. K. Yamins, “Threedworld: A platform for interactive multi-modal physical simulation,” 2020.
  206. C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem, “Brax – a differentiable physics engine for large scale rigid body simulation,” 2021.
  207. A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee, M. Savva, S. Chernova, and D. Batra, “Sim2real predictivity: Does evaluation in simulation predict real-world performance?” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6670–6677, oct 2020.
  208. N. Yokoyama, S. Ha, and D. Batra, “Success weighted by completion time: A dynamics-aware evaluation criteria for embodied navigation,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021.
  209. J. Truong, D. Yarats, T. Li, F. Meier, S. Chernova, D. Batra, and A. Rai, “Learning navigation skills for legged robots with learned robot embeddings,” 2020.
  210. J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning quadrupedal locomotion over challenging terrain,” Science Robotics, vol. 5, no. 47, p. eabc5986, 2020.
  211. W. Xu, C. N. Jones, B. Svetozarevic, C. R. Laughman, and A. Chakrabarty, “VABO: Violation-aware Bayesian optimization for closed-loop control performance optimization with unmodeled constraints,” in 2022 American Control Conference (ACC).   IEEE, 2022, pp. 5288–5293.
  212. A. Chakrabarty, C. Danielson, S. A. Bortoff, and C. R. Laughman, “Accelerating self-optimization control of refrigerant cycles with bayesian optimization and adaptive moment estimation,” Applied Thermal Engineering, vol. 197, p. 117335, 2021.
  213. Modelica Association, “Modelica specification, Version 3.4,” 2017.
  214. H. Qiao, V. Aute, and R. Radermacher, “Transient modeling of a flash tank vapor injection heat pump system - Part I: Model development,” Int. J. Refrigeration, vol. 49, pp. 169–182, 2015.
  215. J. R. Gardner, M. J. Kusner, Z. E. Xu, K. Q. Weinberger, and J. P. Cunningham, “Bayesian optimization with inequality constraints,” in ICML, vol. 2014, 2014, pp. 937–945.
  216. F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller optimization for quadrotors with gaussian processes,” in 2016 IEEE Int. Conf. on Robot. and Automat. (ICRA).   IEEE, 2016, pp. 491–496.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (13)
  1. Truong X. Nghiem (8 papers)
  2. Ján Drgoňa (33 papers)
  3. Colin Jones (13 papers)
  4. Zoltan Nagy (37 papers)
  5. Roland Schwan (7 papers)
  6. Biswadip Dey (32 papers)
  7. Ankush Chakrabarty (21 papers)
  8. Stefano Di Cairano (26 papers)
  9. Joel A. Paulson (21 papers)
  10. Andrea Carron (32 papers)
  11. Melanie N. Zeilinger (100 papers)
  12. Wenceslao Shaw Cortez (13 papers)
  13. Draguna L. Vrabie (4 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.