Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AquaSAM: Underwater Image Foreground Segmentation (2308.04218v1)

Published 8 Aug 2023 in cs.CV

Abstract: The Segment Anything Model (SAM) has revolutionized natural image segmentation, nevertheless, its performance on underwater images is still restricted. This work presents AquaSAM, the first attempt to extend the success of SAM on underwater images with the purpose of creating a versatile method for the segmentation of various underwater targets. To achieve this, we begin by classifying and extracting various labels automatically in SUIM dataset. Subsequently, we develop a straightforward fine-tuning method to adapt SAM to general foreground underwater image segmentation. Through extensive experiments involving eight segmentation tasks like human divers, we demonstrate that AquaSAM outperforms the default SAM model especially at hard tasks like coral reefs. AquaSAM achieves an average Dice Similarity Coefficient (DSC) of 7.13 (%) improvement and an average of 8.27 (%) on mIoU improvement in underwater segmentation tasks.

Citations (6)

Summary

We haven't generated a summary for this paper yet.