Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Liouvillian Dynamics of the Open Schwinger Model: String Breaking and Kinetic Dissipation in a Thermal Medium (2308.03878v5)

Published 7 Aug 2023 in quant-ph, hep-lat, hep-ph, and nucl-th

Abstract: Understanding the dynamics of bound state formation is one of the fundamental questions in confining quantum field theories such as Quantum Chromodynamics (QCD). One hadronization mechanism that has garnered significant attention is the breaking of a string initially connecting a fermion and an anti-fermion. Deepening our understanding of real-time string-breaking dynamics with simpler, lower dimensional models like the Schwinger model can improve our understanding of the hadronization process in QCD and other confining systems found in condensed matter and statistical systems. In this paper, we consider the string-breaking dynamics within the Schwinger model and investigate its modification inside a thermal medium, treating the Schwinger model as an open quantum system coupled to a thermal environment. Within the regime of weak coupling between the system and environment, the real-time evolution of the system can be described by a Lindblad evolution equation. We analyze the Liouvillian gaps of this Lindblad equation and the time dependence of the system's von Neumann entropy. We observe that the late-time relaxation rate decreases as the environment correlation length increases. Moreover, when the environment correlation length is infinite, the system exhibits two steady states, one in each of the sectors with definite charge-conjugation-parity (CP) quantum numbers. For parameter regimes where an initial string breaks in vacuum, we observe a delay of the string breaking in the medium, due to kinetic dissipation effects. Conversely, in regimes where an initial string remains intact in vacuum time evolution, we observe string breaking (melting) in the thermal medium. We further discuss how the Liouvillian dynamics of the open Schwinger model can be simulated on quantum computers and provide an estimate of the associated Trotter errors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (177)
  1. R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, M. Ansmann, F. Arute, K. Arya, A. Asfaw, and et al., “Suppressing quantum errors by scaling a surface code logical qubit,” Nature 614 no. 7949, (2023) 676–681. https://doi.org/10.1038/s41586-022-05434-1.
  2. V. V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios, S. Ganjam, A. Miano, B. L. Brock, A. Z. Ding, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, and M. H. Devoret, “Real-time quantum error correction beyond break-even,” Nature 616 no. 7955, (Mar, 2023) 50–55. https://doi.org/10.1038%2Fs41586-023-05782-6.
  3. M. Devoret and R. Schoelkopf, “Superconducting circuits for quantum information: An outlook,” Science (New York, N.Y.) 339 (03, 2013) 1169–74.
  4. M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, “Superconducting qubits: Current state of play,” Annual Review of Condensed Matter Physics 11 no. 1, (2020) 369–395.
  5. C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-ion quantum computing: Progress and challenges,” Applied Physics Reviews 6 no. 2, (2019) 021314.
  6. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, and et al., “Quantum supremacy using a programmable superconducting processor,” Nature 574 no. 7779, (2019) 505–510. https://doi.org/10.1038/s41586-019-1666-5.
  7. Microsoft Quantum Collaboration, M. Aghaee, A. Akkala, Z. Alam, R. Ali, A. Alcaraz Ramirez, M. Andrzejczuk, A. E. Antipov, and et al., “Inas-al hybrid devices passing the topological gap protocol,” Phys. Rev. B 107 (Jun, 2023) 245423. https://link.aps.org/doi/10.1103/PhysRevB.107.245423.
  8. Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den Berg, S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel, K. Temme, and A. Kandala, “Evidence for the utility of quantum computing before fault tolerance,” Nature 618 no. 7965, (2023) 500–505. https://doi.org/10.1038/s41586-023-06096-3.
  9. J. B. Kogut and L. Susskind, “Hamiltonian Formulation of Wilson’s Lattice Gauge Theories,” Phys. Rev. D 11 (1975) 395–408.
  10. S. P. Jordan, K. S. M. Lee, and J. Preskill, “Quantum Computation of Scattering in Scalar Quantum Field Theories,” Quant. Inf. Comput. 14 (2014) 1014–1080, arXiv:1112.4833 [hep-th].
  11. S. P. Jordan, H. Krovi, K. S. M. Lee, and J. Preskill, “BQP-completeness of Scattering in Scalar Quantum Field Theory,” Quantum 2 (2018) 44, arXiv:1703.00454 [quant-ph].
  12. C. W. Bauer, Z. Davoudi, N. Klco, and M. J. Savage, “Quantum simulation of fundamental particles and forces,” Nature Rev. Phys. 5 no. 7, (2023) 420–432.
  13. J. D. Martin, D. Neill, A. Roggero, H. Duan, and J. Carlson, “Equilibration of quantum many-body fast neutrino flavor oscillations,” arXiv:2307.16793 [hep-ph].
  14. S. Chandrasekharan and U. J. Wiese, “Quantum link models: A Discrete approach to gauge theories,” Nucl. Phys. B 492 (1997) 455–474, arXiv:hep-lat/9609042.
  15. E. A. Martinez et al., “Real-time dynamics of lattice gauge theories with a few-qubit quantum computer,” Nature 534 (2016) 516–519, arXiv:1605.04570 [quant-ph].
  16. E. Ercolessi, P. Facchi, G. Magnifico, S. Pascazio, and F. V. Pepe, “Phase Transitions in Znsubscript𝑍𝑛Z_{n}italic_Z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT Gauge Models: Towards Quantum Simulations of the Schwinger-Weyl QED,” Phys. Rev. D 98 no. 7, (2018) 074503, arXiv:1705.11047 [quant-ph].
  17. E. Dumitrescu, A. McCaskey, G. Hagen, G. Jansen, T. Morris, T. Papenbrock, R. Pooser, D. Dean, and P. Lougovski, “Cloud Quantum Computing of an Atomic Nucleus,” Phys. Rev. Lett. 120 no. 21, (2018) 210501, arXiv:1801.03897 [quant-ph].
  18. H. Lamm and S. Lawrence, “Simulation of Nonequilibrium Dynamics on a Quantum Computer,” Phys. Rev. Lett. 121 no. 17, (2018) 170501, arXiv:1806.06649 [quant-ph].
  19. I. Raychowdhury and J. R. Stryker, “Solving Gauss’s Law on Digital Quantum Computers with Loop-String-Hadron Digitization,” Phys. Rev. Res. 2 no. 3, (2020) 033039, arXiv:1812.07554 [hep-lat].
  20. A. Roggero, A. C. Li, J. Carlson, R. Gupta, and G. N. Perdue, “Quantum Computing for Neutrino-Nucleus Scattering,” Phys. Rev. D 101 no. 7, (2020) 074038, arXiv:1911.06368 [quant-ph].
  21. N. Mueller, A. Tarasov, and R. Venugopalan, “Deeply inelastic scattering structure functions on a hybrid quantum computer,” Phys. Rev. D 102 no. 1, (2020) 016007, arXiv:1908.07051 [hep-th].
  22. A. Avkhadiev, P. Shanahan, and R. Young, “Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing,” Phys. Rev. Lett. 124 no. 8, (2020) 080501, arXiv:1908.04194 [hep-lat].
  23. M. Kreshchuk, W. M. Kirby, G. Goldstein, H. Beauchemin, and P. J. Love, “Quantum Simulation of Quantum Field Theory in the Light-Front Formulation,” arXiv:2002.04016 [quant-ph].
  24. Z. Davoudi, I. Raychowdhury, and A. Shaw, “Search for Efficient Formulations for Hamiltonian Simulation of non-Abelian Lattice Gauge Theories,” arXiv:2009.11802 [hep-lat].
  25. R. A. Briceño, J. V. Guerrero, M. T. Hansen, and A. M. Sturzu, “Role of boundary conditions in quantum computations of scattering observables,” Phys. Rev. D 103 no. 1, (2021) 014506, arXiv:2007.01155 [hep-lat].
  26. M. G. Echevarria, I. L. Egusquiza, E. Rico, and G. Schnell, “Quantum Simulation of Light-Front Parton Correlators,” arXiv:2011.01275 [quant-ph].
  27. T. D. Cohen, H. Lamm, S. Lawrence, and Y. Yamauchi, “Quantum algorithms for transport coefficients in gauge theories,” arXiv:2104.02024 [hep-lat].
  28. J. a. Barata and C. A. Salgado, “A quantum strategy to compute the jet quenching parameter q^^𝑞\hat{q}over^ start_ARG italic_q end_ARG,” arXiv:2104.04661 [hep-ph].
  29. J. a. Barata, X. Du, M. Li, W. Qian, and C. A. Salgado, “Medium induced jet broadening in a quantum computer,” Phys. Rev. D 106 no. 7, (2022) 074013, arXiv:2208.06750 [hep-ph].
  30. T. Li, X. Guo, W. K. Lai, X. Liu, E. Wang, H. Xing, D.-B. Zhang, and S.-L. Zhu, “Partonic Structure by Quantum Computing,” arXiv:2106.03865 [hep-ph].
  31. D. E. Kharzeev and Y. Kikuchi, “Real-time chiral dynamics from a digital quantum simulation,” Phys. Rev. Res. 2 no. 2, (2020) 023342, arXiv:2001.00698 [hep-ph].
  32. C. W. Bauer, M. Freytsis, and B. Nachman, “Simulating collider physics on quantum computers using effective field theories,” arXiv:2102.05044 [hep-ph].
  33. J. a. Barata, X. Du, M. Li, W. Qian, and C. A. Salgado, “Quantum simulation of in-medium QCD jets: momentum broadening, gluon production, and entropy growth,” arXiv:2307.01792 [hep-ph].
  34. F. Turro et al., “A quantum-classical co-processing protocol towards simulating nuclear reactions on contemporary quantum hardware,” arXiv:2302.06734 [quant-ph].
  35. J. S. Schwinger, “Gauge Invariance and Mass. 2.,” Phys. Rev. 128 (1962) 2425–2429.
  36. S. R. Coleman, R. Jackiw, and L. Susskind, “Charge Shielding and Quark Confinement in the Massive Schwinger Model,” Annals Phys. 93 (1975) 267.
  37. P. Hauke, D. Marcos, M. Dalmonte, and P. Zoller, “Quantum simulation of a lattice schwinger model in a chain of trapped ions,” Phys. Rev. X 3 (Nov, 2013) 041018. https://link.aps.org/doi/10.1103/PhysRevX.3.041018.
  38. T. Pichler, M. Dalmonte, E. Rico, P. Zoller, and S. Montangero, “Real-time Dynamics in U(1) Lattice Gauge Theories with Tensor Networks,” Phys. Rev. X 6 no. 1, (2016) 011023, arXiv:1505.04440 [cond-mat.quant-gas].
  39. C. Muschik, M. Heyl, E. Martinez, T. Monz, P. Schindler, B. Vogell, M. Dalmonte, P. Hauke, R. Blatt, and P. Zoller, “U(1) Wilson lattice gauge theories in digital quantum simulators,” New J. Phys. 19 no. 10, (2017) 103020, arXiv:1612.08653 [quant-ph].
  40. N. Klco, E. Dumitrescu, A. McCaskey, T. Morris, R. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. Savage, “Quantum-classical computation of Schwinger model dynamics using quantum computers,” Phys. Rev. A 98 no. 3, (2018) 032331, arXiv:1803.03326 [quant-ph].
  41. D. B. Kaplan and J. R. Stryker, “Gauss’s law, duality, and the Hamiltonian formulation of U(1) lattice gauge theory,” Phys. Rev. D 102 no. 9, (2020) 094515, arXiv:1806.08797 [hep-lat].
  42. G. Magnifico, M. Dalmonte, P. Facchi, S. Pascazio, F. V. Pepe, and E. Ercolessi, “Real Time Dynamics and Confinement in the ℤnsubscriptℤ𝑛\mathbb{Z}_{n}blackboard_Z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT Schwinger-Weyl lattice model for 1+1 QED,” Quantum 4 (2020) 281, arXiv:1909.04821 [quant-ph].
  43. N. Butt, S. Catterall, Y. Meurice, R. Sakai, and J. Unmuth-Yockey, “Tensor network formulation of the massless Schwinger model with staggered fermions,” Phys. Rev. D 101 no. 9, (2020) 094509, arXiv:1911.01285 [hep-lat].
  44. B. Chakraborty, M. Honda, T. Izubuchi, Y. Kikuchi, and A. Tomiya, “Classically emulated digital quantum simulation of the Schwinger model with a topological term via adiabatic state preparation,” Phys. Rev. D 105 no. 9, (2022) 094503, arXiv:2001.00485 [hep-lat].
  45. A. F. Shaw, P. Lougovski, J. R. Stryker, and N. Wiebe, “Quantum Algorithms for Simulating the Lattice Schwinger Model,” Quantum 4 (2020) 306, arXiv:2002.11146 [quant-ph].
  46. M. Honda, E. Itou, Y. Kikuchi, L. Nagano, and T. Okuda, “Classically emulated digital quantum simulation for screening and confinement in the Schwinger model with a topological term,” Phys. Rev. D 105 no. 1, (2022) 014504, arXiv:2105.03276 [hep-lat].
  47. C. W. Bauer and D. M. Grabowska, “Efficient representation for simulating U(1) gauge theories on digital quantum computers at all values of the coupling,” Phys. Rev. D 107 no. 3, (2023) L031503, arXiv:2111.08015 [hep-ph].
  48. L. Nagano, A. Bapat, and C. W. Bauer, “Quench dynamics of the Schwinger model via variational quantum algorithms,” arXiv:2302.10933 [hep-ph].
  49. R. Belyansky, S. Whitsitt, N. Mueller, A. Fahimniya, E. R. Bennewitz, Z. Davoudi, and A. V. Gorshkov, “High-Energy Collision of Quarks and Hadrons in the Schwinger Model: From Tensor Networks to Circuit QED,” arXiv:2307.02522 [quant-ph].
  50. L. Funcke, K. Jansen, and S. Kühn, “Exploring the CP-violating Dashen phase in the Schwinger model with tensor networks,” Phys. Rev. D 108 no. 1, (2023) 014504, arXiv:2303.03799 [hep-lat].
  51. T. Angelides, L. Funcke, K. Jansen, and S. Kühn, “Computing the mass shift of Wilson and staggered fermions in the lattice Schwinger model with matrix product states,” Phys. Rev. D 108 no. 1, (2023) 014516, arXiv:2303.11016 [hep-lat].
  52. J. C. Halimeh, I. P. McCulloch, B. Yang, and P. Hauke, “Tuning the topological θ𝜃\thetaitalic_θ-angle in cold-atom quantum simulators of gauge theories,” PRX Quantum 3 (Nov, 2022) 040316. https://link.aps.org/doi/10.1103/PRXQuantum.3.040316.
  53. W.-Y. Zhang et al., “Observation of microscopic confinement dynamics by a tunable topological θ𝜃\thetaitalic_θ-angle,” arXiv:2306.11794 [cond-mat.quant-gas].
  54. E. Zohar, J. I. Cirac, and B. Reznik, “Cold-atom quantum simulator for su(2) yang-mills lattice gauge theory,” Phys. Rev. Lett. 110 (Mar, 2013) 125304. https://link.aps.org/doi/10.1103/PhysRevLett.110.125304.
  55. E. Zohar, J. I. Cirac, and B. Reznik, “Simulating (2+1212+12 + 1)-dimensional lattice qed with dynamical matter using ultracold atoms,” Phys. Rev. Lett. 110 (Jan, 2013) 055302. https://link.aps.org/doi/10.1103/PhysRevLett.110.055302.
  56. D. Spitz and J. Berges, “Schwinger pair production and string breaking in non-Abelian gauge theory from real-time lattice improved Hamiltonians,” Phys. Rev. D 99 no. 3, (2019) 036020, arXiv:1812.05835 [hep-ph].
  57. N. Klco, J. R. Stryker, and M. J. Savage, “SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers,” Phys. Rev. D 101 no. 7, (2020) 074512, arXiv:1908.06935 [quant-ph].
  58. S. A Rahman, R. Lewis, E. Mendicelli, and S. Powell, “SU(2) lattice gauge theory on a quantum annealer,” Phys. Rev. D 104 no. 3, (2021) 034501, arXiv:2103.08661 [hep-lat].
  59. A. Ciavarella, N. Klco, and M. J. Savage, “Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis,” Phys. Rev. D 103 no. 9, (2021) 094501, arXiv:2101.10227 [quant-ph].
  60. A. N. Ciavarella and I. A. Chernyshev, “Preparation of the SU(3) lattice Yang-Mills vacuum with variational quantum methods,” Phys. Rev. D 105 no. 7, (2022) 074504, arXiv:2112.09083 [quant-ph].
  61. X. Yao, “Quantum Simulation of Light-Front QCD for Jet Quenching in Nuclear Environments,” arXiv:2205.07902 [hep-ph].
  62. J. Y. Araz, S. Schenk, and M. Spannowsky, “Towards a Quantum Simulation of Nonlinear Sigma Models with a Topological Term,” arXiv:2210.03679 [quant-ph].
  63. S. A Rahman, R. Lewis, E. Mendicelli, and S. Powell, “Self-mitigating Trotter circuits for SU(2) lattice gauge theory on a quantum computer,” Phys. Rev. D 106 no. 7, (2022) 074502, arXiv:2205.09247 [hep-lat].
  64. R. C. Farrell, I. A. Chernyshev, S. J. M. Powell, N. A. Zemlevskiy, M. Illa, and M. J. Savage, “Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions: (II) Single-Baryon β𝛽\betaitalic_β-Decay in Real Time,” arXiv:2209.10781 [quant-ph].
  65. R. C. Farrell, I. A. Chernyshev, S. J. M. Powell, N. A. Zemlevskiy, M. Illa, and M. J. Savage, “Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions: (I) Axial Gauge,” arXiv:2207.01731 [quant-ph].
  66. Z. Davoudi, A. F. Shaw, and J. R. Stryker, “General quantum algorithms for Hamiltonian simulation with applications to a non-Abelian lattice gauge theory,” arXiv:2212.14030 [hep-lat].
  67. A. N. Ciavarella, S. Caspar, H. Singh, and M. J. Savage, “Preparation for Quantum Simulation of the 1+1D O(3) Non-linear σ𝜎\sigmaitalic_σ-Model using Cold Atoms,” arXiv:2211.07684 [quant-ph].
  68. T. V. Zache, D. González-Cuadra, and P. Zoller, “Quantum and classical spin network algorithms for q𝑞qitalic_q-deformed Kogut-Susskind gauge theories,” arXiv:2304.02527 [quant-ph].
  69. T. Hayata and Y. Hidaka, “Breaking new ground for quantum and classical simulations of SU⁢(3)SU3\mathrm{SU(3)}roman_SU ( 3 ) Yang-Mills theory,” arXiv:2306.12324 [hep-lat].
  70. B. Müller and X. Yao, “Simple Hamiltonian for quantum simulation of strongly coupled (2+1)D SU(2) lattice gauge theory on a honeycomb lattice,” Phys. Rev. D 108 no. 9, (2023) 094505, arXiv:2307.00045 [quant-ph].
  71. G. Cataldi, G. Magnifico, P. Silvi, and S. Montangero, “(2+1)D SU(2) Yang-Mills Lattice Gauge Theory at finite density via tensor networks,” arXiv:2307.09396 [hep-lat].
  72. C. W. Bauer, I. D’Andrea, M. Freytsis, and D. M. Grabowska, “A new basis for Hamiltonian SU(2) simulations,” arXiv:2307.11829 [hep-ph].
  73. T. Hayata and Y. Hidaka, “Thermalization of Yang-Mills theory in a (3+1)31(3+1)( 3 + 1 ) dimensional small lattice system,” Phys. Rev. D 103 no. 9, (2021) 094502, arXiv:2011.09814 [hep-lat].
  74. T. Hayata, Y. Hidaka, and Y. Kikuchi, “Diagnosis of information scrambling from Hamiltonian evolution under decoherence,” Phys. Rev. D 104 no. 7, (2021) 074518, arXiv:2103.05179 [quant-ph].
  75. X. Yao, “SU(2) gauge theory in 2+1 dimensions on a plaquette chain obeys the eigenstate thermalization hypothesis,” Phys. Rev. D 108 no. 3, (2023) L031504, arXiv:2303.14264 [hep-lat].
  76. T. Sjostrand, S. Mrenna, and P. Z. Skands, “A Brief Introduction to PYTHIA 8.1,” Comput. Phys. Commun. 178 (2008) 852–867, arXiv:0710.3820 [hep-ph].
  77. C. Shen and B. Schenke, “Longitudinal dynamics and particle production in relativistic nuclear collisions,” Phys. Rev. C 105 no. 6, (2022) 064905, arXiv:2203.04685 [nucl-th].
  78. A. J. Larkoski, I. Moult, and B. Nachman, “Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning,” Phys. Rept. 841 (2020) 1–63, arXiv:1709.04464 [hep-ph].
  79. Springer, 2019. arXiv:1901.10342 [hep-ph].
  80. M. Jaarsma, Y. Li, I. Moult, W. J. Waalewijn, and H. X. Zhu, “Energy Correlators on Tracks: Resummation and Non-Perturbative Effects,” arXiv:2307.15739 [hep-ph].
  81. K. Lee and I. Moult, “Energy Correlators Taking Charge,” arXiv:2308.00746 [hep-ph].
  82. K. Lee and I. Moult, “Joint Track Functions: Expanding the Space of Calculable Correlations at Colliders,” arXiv:2308.01332 [hep-ph].
  83. K. Lee, B. Meçaj, and I. Moult, “Conformal Colliders Meet the LHC,” arXiv:2205.03414 [hep-ph].
  84. K. Devereaux, W. Fan, W. Ke, K. Lee, and I. Moult, “Imaging Cold Nuclear Matter with Energy Correlators,” arXiv:2303.08143 [hep-ph].
  85. ALICE Collaboration, S. Acharya et al., “Measurement of the angle between jet axes in Pb−--Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\rm NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV,” arXiv:2303.13347 [nucl-ex].
  86. A. Tamis, “Measurement of Two-Point Energy Correlators Within Jets in p⁢p𝑝𝑝ppitalic_p italic_p Collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 200 GeV at STAR,” in 11th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions: Hard Probes 2023. 9, 2023. arXiv:2309.05761 [hep-ex].
  87. H. S. Hannesdottir, A. Pathak, M. D. Schwartz, and I. W. Stewart, “Prospects for strong coupling measurement at hadron colliders using soft-drop jet mass,” JHEP 04 (2023) 087, arXiv:2210.04901 [hep-ph].
  88. H. Elfner and B. Müller, “The exploration of hot and dense nuclear matter: Introduction to relativistic heavy-ion physics,” arXiv:2210.12056 [nucl-th].
  89. W. Busza, K. Rajagopal, and W. van der Schee, “Heavy Ion Collisions: The Big Picture, and the Big Questions,” Ann. Rev. Nucl. Part. Sci. 68 (2018) 339–376, arXiv:1802.04801 [hep-ph].
  90. J. Berges, M. P. Heller, A. Mazeliauskas, and R. Venugopalan, “QCD thermalization: Ab initio approaches and interdisciplinary connections,” Rev. Mod. Phys. 93 no. 3, (2021) 035003, arXiv:2005.12299 [hep-th].
  91. R. Abdul Khalek et al., “Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report,” arXiv:2103.05419 [physics.ins-det].
  92. M. Kormos, M. Collura, G. Takács, and P. Calabrese, “Real-time confinement following a quantum quench to a non-integrable model,” Nature Physics 13 no. 3, (Nov, 2016) 246–249. https://doi.org/10.1038/nphys3934.
  93. R. Coldea, D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer, “Quantum criticality in an ising chain: Experimental evidence for emergent e8 symmetry,” Science 327 no. 5962, (Jan, 2010) 177–180. https://doi.org/10.1126/science.1180085.
  94. B. Lake, A. M. Tsvelik, S. Notbohm, D. A. Tennant, T. G. Perring, M. Reehuis, C. Sekar, G. Krabbes, and B. Büchner, “Confinement of fractional quantum number particles in a condensed-matter system,” Nature Physics 6 no. 1, (Nov, 2009) 50–55. https://doi.org/10.1038/nphys1462.
  95. C. Morris, R. V. Aguilar, A. Ghosh, S. Koohpayeh, J. Krizan, R. Cava, O. Tchernyshyov, T. McQueen, and N. Armitage, “Hierarchy of bound states in the one-dimensional ferromagnetic ising chain conb2o6 investigated by high-resolution time-domain terahertz spectroscopy,” Physical Review Letters 112 no. 13, (Apr, 2014) . https://doi.org/10.1103/physrevlett.112.137403.
  96. B. Grenier, S. Petit, V. Simonet, E. Cané vet, L.-P. Regnault, S. Raymond, B. Canals, C. Berthier, and P. Lejay, “Longitudinal and transverse zeeman ladders in the ising-like chain antiferromagnet baco2v2o8,” Physical Review Letters 114 no. 1, (Jan, 2015) . https://doi.org/10.1103/physrevlett.114.017201.
  97. Z. Wang, J. Wu, S. Xu, W. Yang, C. Wu, A. K. Bera, A. T. M. N. Islam, B. Lake, D. Kamenskyi, P. Gogoi, H. Engelkamp, N. Wang, J. Deisenhofer, and A. Loidl, “From confined spinons to emergent fermions: Observation of elementary magnetic excitations in a transverse-field ising chain,” Physical Review B 94 no. 12, (Sep, 2016) . https://doi.org/10.1103/physrevb.94.125130.
  98. W. Fischler, J. Kogut, and L. Susskind, “Quark confinement in unusual environments,” Phys. Rev. D 19 (Feb, 1979) 1188–1197. https://link.aps.org/doi/10.1103/PhysRevD.19.1188.
  99. R. D. Pisarski and O. Alvarez, “Strings at Finite Temperature and Deconfinement,” Phys. Rev. D 26 (1982) 3735.
  100. B. Buyens, F. Verstraete, and K. Van Acoleyen, “Hamiltonian simulation of the Schwinger model at finite temperature,” Phys. Rev. D 94 no. 8, (2016) 085018, arXiv:1606.03385 [hep-lat].
  101. QuNu Collaboration, X.-D. Xie, X. Guo, H. Xing, Z.-Y. Xue, D.-B. Zhang, and S.-L. Zhu, “Variational thermal quantum simulation of the lattice Schwinger model,” Phys. Rev. D 106 no. 5, (2022) 054509, arXiv:2205.12767 [quant-ph].
  102. A. M. Czajka, Z.-B. Kang, H. Ma, and F. Zhao, “Quantum simulation of chiral phase transitions,” JHEP 08 (2022) 209, arXiv:2112.03944 [hep-ph].
  103. J. De Nardis, S. Gopalakrishnan, R. Vasseur, and B. Ware, “Stability of superdiffusion in nearly integrable spin chains,” Phys. Rev. Lett. 127 (Jul, 2021) 057201. https://link.aps.org/doi/10.1103/PhysRevLett.127.057201.
  104. N. Mueller, T. V. Zache, and R. Ott, “Thermalization of Gauge Theories from their Entanglement Spectrum,” Phys. Rev. Lett. 129 no. 1, (2022) 011601, arXiv:2107.11416 [quant-ph].
  105. D. Schaich, R. G. Jha, and A. Joseph, “Thermal phase structure of dimensionally reduced super-Yang–Mills,” PoS LATTICE2021 (2022) 187, arXiv:2201.03097 [hep-lat].
  106. Z. Davoudi, N. Mueller, and C. Powers, “Toward Exploring Phase Diagrams of Gauge Theories on Quantum Computers with Thermal Pure Quantum States,” 12, 2022. arXiv:2212.11388 [hep-lat].
  107. X. Yao, “Open quantum systems for quarkonia,” Int. J. Mod. Phys. A 36 no. 20, (2021) 2130010, arXiv:2102.01736 [hep-ph].
  108. A. Kossakowski, “On quantum statistical mechanics of non-hamiltonian systems,” Reports on Mathematical Physics 3 no. 4, (1972) 247 – 274.
  109. G. Lindblad, “On the Generators of Quantum Dynamical Semigroups,” Commun. Math. Phys. 48 (1976) 119.
  110. V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. Sudarshan, “Properties of Quantum Markovian Master Equations,” Rept. Math. Phys. 13 (1978) 149.
  111. Y. Akamatsu and A. Rothkopf, “Stochastic potential and quantum decoherence of heavy quarkonium in the quark-gluon plasma,” Phys. Rev. D 85 (2012) 105011, arXiv:1110.1203 [hep-ph].
  112. Y. Akamatsu, “Heavy quark master equations in the Lindblad form at high temperatures,” Phys. Rev. D 91 no. 5, (2015) 056002, arXiv:1403.5783 [hep-ph].
  113. R. Katz and P. B. Gossiaux, “The Schrödinger–Langevin equation with and without thermal fluctuations,” Annals Phys. 368 (2016) 267–295, arXiv:1504.08087 [quant-ph].
  114. N. Brambilla, M. A. Escobedo, J. Soto, and A. Vairo, “Quarkonium suppression in heavy-ion collisions: an open quantum system approach,” Phys. Rev. D 96 no. 3, (2017) 034021, arXiv:1612.07248 [hep-ph].
  115. N. Brambilla, M. A. Escobedo, J. Soto, and A. Vairo, “Heavy quarkonium suppression in a fireball,” Phys. Rev. D 97 no. 7, (2018) 074009, arXiv:1711.04515 [hep-ph].
  116. J.-P. Blaizot and M. A. Escobedo, “Quantum and classical dynamics of heavy quarks in a quark-gluon plasma,” JHEP 06 (2018) 034, arXiv:1711.10812 [hep-ph].
  117. S. Kajimoto, Y. Akamatsu, M. Asakawa, and A. Rothkopf, “Dynamical dissociation of quarkonia by wave function decoherence,” Phys. Rev. D 97 no. 1, (2018) 014003, arXiv:1705.03365 [nucl-th].
  118. J.-P. Blaizot and M. A. Escobedo, “Approach to equilibrium of a quarkonium in a quark-gluon plasma,” Phys. Rev. D 98 no. 7, (2018) 074007, arXiv:1803.07996 [hep-ph].
  119. X. Yao and T. Mehen, “Quarkonium in-medium transport equation derived from first principles,” Phys. Rev. D 99 no. 9, (2019) 096028, arXiv:1811.07027 [hep-ph].
  120. Y. Akamatsu, M. Asakawa, S. Kajimoto, and A. Rothkopf, “Quantum dissipation of a heavy quark from a nonlinear stochastic Schr\”odinger equation,” JHEP 07 (2018) 029, arXiv:1805.00167 [nucl-th].
  121. T. Miura, Y. Akamatsu, M. Asakawa, and A. Rothkopf, “Quantum Brownian motion of a heavy quark pair in the quark-gluon plasma,” Phys. Rev. D 101 no. 3, (2020) 034011, arXiv:1908.06293 [nucl-th].
  122. R. Sharma and A. Tiwari, “Quantum evolution of quarkonia with correlated and uncorrelated noise,” Phys. Rev. D 101 no. 7, (2020) 074004, arXiv:1912.07036 [hep-ph].
  123. X. Yao and T. Mehen, “Quarkonium Semiclassical Transport in Quark-Gluon Plasma: Factorization and Quantum Correction,” JHEP 02 (2021) 062, arXiv:2009.02408 [hep-ph].
  124. Y. Akamatsu, M. Asakawa, and S. Kajimoto, “Dynamics of in-medium quarkonia in SU(3) and SU(2) gauge theories,” Phys. Rev. D 105 no. 5, (2022) 054036, arXiv:2108.06921 [nucl-th].
  125. N. Brambilla, M. A. Escobedo, M. Strickland, A. Vairo, P. Vander Griend, and J. H. Weber, “Bottomonium production in heavy-ion collisions using quantum trajectories: Differential observables and momentum anisotropy,” Phys. Rev. D 104 no. 9, (2021) 094049, arXiv:2107.06222 [hep-ph].
  126. T. Miura, Y. Akamatsu, M. Asakawa, and Y. Kaida, “Simulation of Lindblad equations for quarkonium in the quark-gluon plasma,” Phys. Rev. D 106 no. 7, (2022) 074001, arXiv:2205.15551 [nucl-th].
  127. N. Brambilla, M. A. Escobedo, A. Islam, M. Strickland, A. Tiwari, A. Vairo, and P. Vander Griend, “Heavy quarkonium dynamics at next-to-leading order in the binding energy over temperature,” JHEP 08 (2022) 303, arXiv:2205.10289 [hep-ph].
  128. Z. Xie and B. Chen, “Open quantum system approach for heavy quark thermalization,” arXiv:2205.13302 [nucl-th].
  129. H. Alalawi, J. Boyd, C. Shen, and M. Strickland, “Impact of fluctuating initial conditions on bottomonium suppression in 5.02 tev heavy-ion collisions,” Physical Review C 107 no. 3, (2023) L031901.
  130. WORLD SCIENTIFIC, 2006. https://www.worldscientific.com/doi/pdf/10.1142/6020. https://www.worldscientific.com/doi/abs/10.1142/6020.
  131. W. A. de Jong, K. Lee, J. Mulligan, M. Płoskoń, F. Ringer, and X. Yao, “Quantum simulation of nonequilibrium dynamics and thermalization in the Schwinger model,” Phys. Rev. D 106 no. 5, (2022) 054508, arXiv:2106.08394 [quant-ph].
  132. T. Binder, K. Mukaida, B. Scheihing-Hitschfeld, and X. Yao, “Non-Abelian electric field correlator at NLO for dark matter relic abundance and quarkonium transport,” JHEP 01 (2022) 137, arXiv:2107.03945 [hep-ph].
  133. B. Scheihing-Hitschfeld and X. Yao, “Gauge Invariance of Non-Abelian Field Strength Correlators: The Axial Gauge Puzzle,” Phys. Rev. Lett. 130 no. 5, (2023) 052302, arXiv:2205.04477 [hep-ph].
  134. G. Nijs, B. Scheihing-Hitschfeld, and X. Yao, “Chromoelectric field correlator for quarkonium transport in the strongly coupled 𝒩𝒩\mathcal{N}caligraphic_N = 4 Yang-Mills plasma from AdS/CFT,” JHEP 06 (2023) 007, arXiv:2304.03298 [hep-ph].
  135. B. Scheihing-Hitschfeld and X. Yao, “Real time quarkonium transport coefficients in open quantum systems from Euclidean QCD,” Phys. Rev. D 108 no. 5, (2023) 054024, arXiv:2306.13127 [hep-ph].
  136. F. Minganti, A. Biella, N. Bartolo, and C. Ciuti, “Spectral theory of liouvillians for dissipative phase transitions,” Physical Review A 98 no. 4, (Oct, 2018) . https://doi.org/10.1103%2Fphysreva.98.042118.
  137. B. Buca, C. Booker, M. Medenjak, and D. Jaksch, “Dissipative Bethe Ansatz: Exact Solutions of Quantum Many-Body Dynamics Under Loss,” arXiv:2004.05955 [cond-mat.stat-mech].
  138. T. Mori and T. Shirai, “Resolving a discrepancy between liouvillian gap and relaxation time in boundary-dissipated quantum many-body systems,” Physical Review Letters 125 no. 23, (Dec, 2020) . https://doi.org/10.1103%2Fphysrevlett.125.230604.
  139. S. Longhi, “Unraveling the non-hermitian skin effect in dissipative systems,” Physical Review B 102 no. 20, (Nov, 2020) . https://doi.org/10.1103%2Fphysrevb.102.201103.
  140. D. Huybrechts, F. Minganti, F. Nori, M. Wouters, and N. Shammah, “Validity of mean-field theory in a dissipative critical system: Liouvillian gap, pt-symmetric antigap, and permutational symmetry in the xyz model,” Physical Review B 101 no. 21, (Jun, 2020) . https://doi.org/10.1103/PhysRevB.101.214302.
  141. J. Hubisz, B. Sambasivam, and J. Unmuth-Yockey, “Quantum Algorithms for Open Lattice Field Theory,” arXiv:2012.05257 [hep-lat].
  142. T. Haga, M. Nakagawa, R. Hamazaki, and M. Ueda, “Liouvillian skin effect: Slowing down of relaxation processes without gap closing,” Physical Review Letters 127 no. 7, (Aug, 2021) . https://doi.org/10.1103%2Fphysrevlett.127.070402.
  143. M. de Leeuw, C. Paletta, and B. Pozsgay, “Constructing integrable lindblad superoperators,” Physical Review Letters 126 no. 24, (Jun, 2021) . https://doi.org/10.1103%2Fphysrevlett.126.240403.
  144. B. Zhou, X. Wang, and S. Chen, “Exponential size scaling of the liouvillian gap in boundary-dissipated systems with anderson localization,” Physical Review B 106 no. 6, (Aug, 2022) . https://doi.org/10.1103%2Fphysrevb.106.064203.
  145. K. Kawabata, T. Numasawa, and S. Ryu, “Entanglement phase transition induced by the non-hermitian skin effect,” Physical Review X 13 no. 2, (Apr, 2023) . https://doi.org/10.1103%2Fphysrevx.13.021007.
  146. K. Kawabata, A. Kulkarni, J. Li, T. Numasawa, and S. Ryu, “Dynamical quantum phase transitions in syk lindbladians,” 2022.
  147. S. Longhi, “Unraveling the non-hermitian skin effect in dissipative systems,” Phys. Rev. B 102 (Nov, 2020) 201103. https://link.aps.org/doi/10.1103/PhysRevB.102.201103.
  148. T. Prosen, “Third quantization: a general method to solve master equations for quadratic open fermi systems,” New Journal of Physics 10 no. 4, (Apr, 2008) 043026. https://doi.org/10.1088%2F1367-2630%2F10%2F4%2F043026.
  149. V. Vaidya and X. Yao, “Transverse momentum broadening of a jet in quark-gluon plasma: an open quantum system EFT,” JHEP 10 (2020) 024, arXiv:2004.11403 [hep-ph].
  150. D. E. Kharzeev and E. M. Levin, “Deep inelastic scattering as a probe of entanglement,” Phys. Rev. D 95 no. 11, (2017) 114008, arXiv:1702.03489 [hep-ph].
  151. Y. Hagiwara, Y. Hatta, B.-W. Xiao, and F. Yuan, “Classical and quantum entropy of parton distributions,” Phys. Rev. D 97 no. 9, (2018) 094029, arXiv:1801.00087 [hep-ph].
  152. K. Zhang, K. Hao, D. Kharzeev, and V. Korepin, “Entanglement entropy production in deep inelastic scattering,” arXiv:2110.04881 [quant-ph].
  153. D. Neill and W. J. Waalewijn, “Entropy of a Jet,” Phys. Rev. Lett. 123 no. 14, (2019) 142001, arXiv:1811.01021 [hep-ph].
  154. B. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand, “Parton Fragmentation and String Dynamics,” Phys. Rept. 97 (1983) 31–145.
  155. F. M. Surace and A. Lerose, “Scattering of mesons in quantum simulators,” New J. Phys. 23 no. 6, (2021) 062001, arXiv:2011.10583 [cond-mat.quant-gas].
  156. P. I. Karpov, G. Y. Zhu, M. P. Heller, and M. Heyl, “Spatiotemporal dynamics of particle collisions in quantum spin chains,” Phys. Rev. Res. 4 no. 3, (2022) L032001, arXiv:2011.11624 [cond-mat.quant-gas].
  157. A. Milsted, J. Liu, J. Preskill, and G. Vidal, “Collisions of False-Vacuum Bubble Walls in a Quantum Spin Chain,” PRX Quantum 3 no. 2, (2022) 020316, arXiv:2012.07243 [quant-ph].
  158. A. Florio, D. Frenklakh, K. Ikeda, D. Kharzeev, V. Korepin, S. Shi, and K. Yu, “Real-time non-perturbative dynamics of jet production: quantum entanglement and vacuum modification,” arXiv:2301.11991 [hep-ph].
  159. R. L. Thews, M. Schroedter, and J. Rafelski, “Enhanced J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ production in deconfined quark matter,” Phys. Rev. C 63 (2001) 054905, arXiv:hep-ph/0007323.
  160. A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, “Statistical hadronization of charm in heavy ion collisions at SPS, RHIC and LHC,” Phys. Lett. B 571 (2003) 36–44, arXiv:nucl-th/0303036.
  161. A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, “Evidence for charmonium generation at the phase boundary in ultra-relativistic nuclear collisions,” Phys. Lett. B 652 (2007) 259–261, arXiv:nucl-th/0701079.
  162. X. Yao and B. Müller, “Approach to equilibrium of quarkonium in quark-gluon plasma,” Phys. Rev. C 97 no. 1, (2018) 014908, arXiv:1709.03529 [hep-ph]. [Erratum: Phys.Rev.C 97, 049903 (2018)].
  163. X. Yao, W. Ke, Y. Xu, S. A. Bass, and B. Müller, “Coupled Boltzmann Transport Equations of Heavy Quarks and Quarkonia in Quark-Gluon Plasma,” JHEP 01 (2021) 046, arXiv:2004.06746 [hep-ph].
  164. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010.
  165. R. Cleve and C. Wang, “Efficient quantum algorithms for simulating lindblad evolution,” arXiv:1612.09512 [quant-ph].
  166. W. A. De Jong, M. Metcalf, J. Mulligan, M. Płoskoń, F. Ringer, and X. Yao, “Quantum simulation of open quantum systems in heavy-ion collisions,” Phys. Rev. D 104 no. 5, (2021) 051501, arXiv:2010.03571 [hep-ph].
  167. A. Hashim, R. K. Naik, A. Morvan, J.-L. Ville, B. Mitchell, J. M. Kreikebaum, M. Davis, E. Smith, C. Iancu, K. P. O’Brien, I. Hincks, J. J. Wallman, J. Emerson, and I. Siddiqi, “Randomized compiling for scalable quantum computing on a noisy superconducting quantum processor,” arXiv e-prints (Oct., 2020) arXiv:2010.00215, arXiv:2010.00215 [quant-ph].
  168. B. M. Boghosian and W. Taylor, “Simulating quantum mechanics on a quantum computer,” Physica D: Nonlinear Phenomena 120 no. 1, (1998) 30–42. https://www.sciencedirect.com/science/article/pii/S0167278998000426. Proceedings of the Fourth Workshop on Physics and Consumption.
  169. S. Lloyd, “Universal quantum simulators,” Science 273 no. 5278, (1996) 1073–1078. https://www.science.org/doi/abs/10.1126/science.273.5278.1073.
  170. A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu, “Theory of trotter error with commutator scaling,” Phys. Rev. X 11 (Feb, 2021) 011020. https://link.aps.org/doi/10.1103/PhysRevX.11.011020.
  171. D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and M. Troyer, “Gate-count estimates for performing quantum chemistry on small quantum computers,” Physical Review A 90 no. 2, (Aug, 2014) . https://doi.org/10.1103%2Fphysreva.90.022305.
  172. J. R. Stryker, “Shearing approach to gauge invariant Trotterization,” arXiv:2105.11548 [hep-lat].
  173. K. C. Han, R. J. Fries, and C. M. Ko, “Jet Fragmentation via Recombination of Parton Showers,” Phys. Rev. C 93 no. 4, (2016) 045207, arXiv:1601.00708 [nucl-th].
  174. R. J. Fries, V. Greco, and P. Sorensen, “Coalescence Models For Hadron Formation From Quark Gluon Plasma,” Ann. Rev. Nucl. Part. Sci. 58 (2008) 177–205, arXiv:0807.4939 [nucl-th].
  175. S. P. Jordan, K. S. M. Lee, and J. Preskill, “Quantum Algorithms for Quantum Field Theories,” Science 336 (2012) 1130–1133, arXiv:1111.3633 [quant-ph].
  176. A. Delgado and J. Thaler, “Quantum annealing for jet clustering with thrust,” Phys. Rev. D 106 no. 9, (2022) 094016, arXiv:2205.02814 [quant-ph].
  177. D. Pires, Y. Omar, and J. a. Seixas, “Adiabatic quantum algorithm for multijet clustering in high energy physics,” Phys. Lett. B 843 (2023) 138000, arXiv:2012.14514 [hep-ex].
Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.