Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Machine learning methods for the search for L&T brown dwarfs in the data of modern sky surveys (2308.03045v3)

Published 6 Aug 2023 in astro-ph.SR, astro-ph.IM, and cs.LG

Abstract: According to various estimates, brown dwarfs (BD) should account for up to 25 percent of all objects in the Galaxy. However, few of them are discovered and well-studied, both individually and as a population. Homogeneous and complete samples of brown dwarfs are needed for these kinds of studies. Due to their weakness, spectral studies of brown dwarfs are rather laborious. For this reason, creating a significant reliable sample of brown dwarfs, confirmed by spectroscopic observations, seems unattainable at the moment. Numerous attempts have been made to search for and create a set of brown dwarfs using their colours as a decision rule applied to a vast amount of survey data. In this work, we use machine learning methods such as Random Forest Classifier, XGBoost, SVM Classifier and TabNet on PanStarrs DR1, 2MASS and WISE data to distinguish L and T brown dwarfs from objects of other spectral and luminosity classes. The explanation of the models is discussed. We also compare our models with classical decision rules, proving their efficiency and relevance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.