Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Measurement-Induced Criticality is Tomographically Optimal (2308.01653v2)

Published 3 Aug 2023 in quant-ph, cond-mat.dis-nn, and cond-mat.str-el

Abstract: We develop a classical shadow tomography protocol utilizing the randomized measurement scheme based on hybrid quantum circuits, which consist of layers of two-qubit random unitary gates mixed with single-qubit random projective measurements. Unlike conventional protocols that perform all measurements by the end of unitary evolutions, our protocol allows measurements to occur at any spacetime position throughout the quantum evolution. We provide a universal classical post-processing strategy to approximately reconstruct the original quantum state from intermittent measurement outcomes given the corresponding random circuit realizations over repeated experiments. We investigated the sample complexity for estimating different observables at different measurement rates of the hybrid quantum circuits. Our result shows that the sample complexity has an optimal scaling at the critical measurement rate when the hybrid circuit undergoes the measurement-induced transition.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. D. Enshan Koh and S. Grewal, Quantum 6, arXiv:2011.11580 (2022), arXiv:2011.11580 [quant-ph] .
  2. H.-Y. Hu and Y.-Z. You, Physical Review Research 4, 013054 (2022), arXiv:2102.10132 [quant-ph] .
  3. G. Hao Low, arXiv e-prints , arXiv:2208.08964 (2022), arXiv:2208.08964 [quant-ph] .
  4. A. C. Potter and R. Vasseur, arXiv e-prints , arXiv:2111.08018 (2021), arXiv:2111.08018 [quant-ph] .
  5. M. J. Gullans and D. A. Huse, Physical Review X 10, 041020 (2020), arXiv:1905.05195 [quant-ph] .
  6. See Appendix A for more rigorous treatment of the normalization.
  7. D. Gottesman, Stabilizer codes and quantum error correction, Ph.D. thesis, California Institute of Technology (1997).
  8. D. Gottesman, arXiv e-prints , quant-ph/9807006 (1998), arXiv:quant-ph/9807006 [quant-ph] .
  9. W. W. Ho and D. A. Abanin, Phys. Rev. B 95, 094302 (2017), arXiv:1508.03784 [cond-mat.stat-mech] .
  10. T. Zhou and X. Chen, Phys. Rev. E 99, 052212 (2019), arXiv:1805.09307 [cond-mat.str-el] .
  11. T. Zhou and A. Nahum, Phys. Rev. B 99, 174205 (2019), arXiv:1804.09737 [cond-mat.stat-mech] .
  12. S. Xu and B. Swingle, Physical Review X 9, 031048 (2019), arXiv:1805.05376 [cond-mat.str-el] .
  13. X. Chen and T. Zhou, Phys. Rev. B 100, 064305 (2019), arXiv:1808.09812 [cond-mat.stat-mech] .
  14. A. A. Akhtar and Y.-Z. You, Phys. Rev. B 102, 134203 (2020), arXiv:2006.08797 [cond-mat.dis-nn] .
  15. See Appendix A for a brief review of the Markov evolution of Pauli weights.
  16. See Appendix B for a statistical mechanical model interpretation for the scaling behavior.
  17. See Appendix C for a more detailed quantitative analysis using toy models.
  18. M. Ippoliti and V. Khemani, arXiv e-prints , arXiv:2307.15011 (2023), arXiv:2307.15011 [quant-ph] .
Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.