Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantum simulation of dissipation for Maxwell equations in dispersive media (2308.00056v2)

Published 31 Jul 2023 in quant-ph and physics.plasm-ph

Abstract: In dispersive media, dissipation appears in the Schr\"odinger representation of classical Maxwell equations as a sparse diagonal operator occupying an $r$-dimensional subspace. A first order Suzuki-Trotter approximation for the evolution operator enables us to isolate the non-unitary operators (associated with dissipation) from the unitary operators (associated with lossless media). The unitary operators can be implemented through qubit lattice algorithm (QLA) on $n$ qubits. However, the non-unitary-dissipative part poses a challenge on how it should be implemented on a quantum computer. In this paper, two probabilistic dilation algorithms are considered for handling the dissipative operators. The first algorithm is based on treating the classical dissipation as a linear amplitude damping-type completely positive trace preserving (CPTP) quantum channel where the combined system-environment must undergo unitary evolution in the dilated space. The unspecified environment can be modeled by just one ancillary qubit, resulting in an implementation scaling of $\textit{O}(2{n-1}n2)$ elementary gates for the dilated unitary evolution operator. The second algorithm approximates the non-unitary operators by the Linear Combination of Unitaries (LCU). We obtain an optimized representation of the non-unitary part, which requires $\textit{O}(2{n})$ elementary gates. Applying the LCU method for a simple dielectric medium with homogeneous dissipation rate, the implementation scaling can be further reduced into $\textit{O}[poly(n)]$ basic gates. For the particular case of weak dissipation we show that our proposed post-selective dilation algorithms can efficiently delve into the transient evolution dynamics of dissipative systems by calculating the respective implementation circuit depth. A connection of our results with the non-linear-in-normalization-only (NINO) quantum channels is also presented.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. doi:10.1038/s41586-019-1666-5.
  2. doi:10.1103/PhysRevLett.127.180501.
  3. doi:10.1016/j.aop.2009.11.007.
  4. doi:10.1238/Physica.Regular.071a00440.
  5. doi:10.1088/1367-2630/9/11/414.
  6. doi:10.1103/PhysRevA.107.042215.
  7. doi:10.1017/S0022377820001166.
  8. doi:10.1063/5.0067204.
  9. doi:10.1016/j.compfluid.2023.106039.
  10. doi:10.1017/CBO9780511976667.
  11. doi:10.1103/PhysRevA.69.054102.
  12. doi:10.1038/s41598-020-60321-x.
  13. doi:10.1103/PhysRevA.104.052420.
  14. doi:10.1103/PhysRevA.106.022414.
  15. doi:10.48550/arXiv.2207.07112.
  16. doi:10.48550/arXiv.2311.10143.
  17. doi:10.1007/978-3-030-51945-2_28.
  18. doi:10.1103/PhysRevA.57.4818.
  19. doi:10.1007/s10955-004-8783-7.
  20. doi:https://doi.org/10.1016/j.camwa.2017.07.025.
  21. doi:10.1088/0253-6102/45/5/013.
  22. doi:10.1137/16M1087072.
  23. doi:10.1038/s41598-021-83521-5.
  24. doi:10.1515/9781400842650.
  25. doi:10.1103/PhysRevB.92.125153.
  26. doi:10.1063/5.0177589.
  27. doi:10.1103/PhysRevA.95.042343.
  28. doi:10.1103/PhysRevLett.80.5243.
  29. doi:10.1063/1.1418246.
  30. doi:10.3367/UFNe.0184.201411b.1177.
  31. doi:10.1007/BF01608499.
  32. doi:10.1063/1.522979.
  33. doi:10.1103/PhysRevLett.129.230504.
  34. doi:10.1103/PhysRevB.105.054304.
  35. doi:10.1080/00018732.2014.933502.
  36. doi:10.1103/PhysRevX.11.011020.
  37. doi:10.1103/PhysRevLett.93.130502.
  38. doi:10.2307/2032342.
  39. doi:10.1016/j.aop.2019.167955.
  40. doi:10.22331/q-2021-03-23-420.
  41. doi:10.1002/qute.202200156.
  42. doi:10.1088/1572-9494/acf304.
  43. doi:10.1103/PhysRevLett.109.230405.
  44. doi:10.1103/PhysRevE.106.054135.
  45. doi:10.5555/2011572.2011575.
  46. doi:10.1142/S0129183199001108.
  47. doi:10.1038/s41567-019-0704-4.
  48. doi:10.1103/PRXQuantum.3.010320.
  49. doi:110.1088/2058-9565/ad17d8.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube