Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

Single-rotating Five-dimensional Near-horizon Extremal Geometry in General Relativity (2307.16534v2)

Published 31 Jul 2023 in gr-qc and hep-th

Abstract: The geometries with SL$(2,\mathbb{R})$ and some axial U$(1)$ isometries are called ``near-horizon extremal geometries" and are found usually, but not necessarily, in the near-horizon limit of the extremal black holes. We present a new member of this family of solutions in five-dimensional Einstein-Hilbert gravity that has only one nonzero angular momentum. In contrast with the single-rotating Myers-Perry extremal black hole and its near-horizon geometry in five dimensions, this solution may have a nonvanishing and finite entropy. Although there is a uniqueness theorem that prohibits the existence of such single-rotating near-horizon geometries in five-dimensional general relativity, this solution has a curvature singularity at one of the poles, which breaks the smoothness conditions in the theorem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. Jacob D. Bekenstein, “Black holes and entropy”, Phys. Rev. D, 7,  2333–2346, (1973).
  2. S. W. Hawking, “Black hole explosions,” Nature 248 (1974), 30-31.
  3. S.W. Hawking, “Particle Creation by Black Holes”, Commun.Math.Phys. 43,  199–220, (1975).
  4. James M. Bardeen, B. Carter, and S.W. Hawking, “The Four laws of black hole mechanics”, Commun.Math.Phys., 31,  161–170, (1973).
  5. J. M. Bardeen and G. T. Horowitz, “The Extreme Kerr throat geometry: A Vacuum analog of AdS(2) x S**2,” Phys. Rev. D 60 (1999) 104030, [hep-th/9905099].
  6. A. Sen, “Black Hole Entropy Function, Attractors and Precision Counting of Microstates,” Gen. Rel. Grav.  40 (2008) 2249, [arXiv:0708.1270].
  7. M. Guica, T. Hartman, W. Song, A. Strominger, “The Kerr/CFT Correspondence,” Phys. Rev. D 80 (2009) 124008, [arXiv:0809.4266].
  8. G. Compère, K. Hajian, A. Seraj and M. M. Sheikh-Jabbari, “Extremal Rotating Black Holes in the Near-Horizon Limit: Phase Space and Symmetry Algebra,” Phys. Lett. B 749 (2015), 443-447 [arXiv:1503.07861].
  9. G. Compère, K. Hajian, A. Seraj and M. M. Sheikh-Jabbari, “Wiggling Throat of Extremal Black Holes,” JHEP 10 (2015), 093 [arXiv:1506.07181].
  10. K. Hajian, M. M. Sheikh-Jabbari and H. Yavartanoo, “Extreme Kerr black hole microstates with horizon fluff,” Phys. Rev. D 98 (2018) no.2, 026025, [arXiv:1708.06378].
  11. H. K. Kunduri and J. Lucietti, “A Classification of near-horizon geometries of extremal vacuum black holes,” J. Math. Phys.  50 (2009) 082502, [arXiv:0806.2051].
  12. H. K. Kunduri and J. Lucietti, “Classification of near-horizon geometries of extremal black holes,”Living Rev. Rel. 16 (2013) 8, [arXiv:1306.2517].
  13. G. Compere, “The Kerr/CFT correspondence and its extensions: a comprehensive review,” Living Rev. Rel.  15 (2012) 11 , [arXiv:1203.3561].
  14. K. Hajian, “On Thermodynamics and Phase Space of Near Horizon Extremal Geometries”, Ph.D thesis, (2015), [arXiv:1508.03494].
  15. H. K. Kunduri, J. Lucietti and H. S. Reall, “Near-horizon symmetries of extremal black holes,” Class. Quant. Grav.  24 (2007) 4169, [arXiv:0705.4214].
  16. R. C. Myers and M. J. Perry, “Black Holes in Higher Dimensional Space-Times,” Annals Phys. 172 (1986), 304
  17. R. Fareghbal, C. N. Gowdigere, A. E. Mosaffa and M. M. Sheikh-Jabbari, “Nearing Extremal Intersecting Giants and New Decoupled Sectors in N = 4 SYM,” JHEP 08 (2008), 070 [arXiv:0801.4457].
  18. R. Fareghbal, C. N. Gowdigere, A. E. Mosaffa and M. M. Sheikh-Jabbari, “Nearing 11d Extremal Intersecting Giants and New Decoupled Sectors in D = 3,6 SCFT’s,” Phys. Rev. D 81 (2010), 046005 [arXiv:0805.0203].
  19. M. M. Sheikh-Jabbari and H. Yavartanoo, “EVH Black Holes, AdS3 Throats and EVH/CFT Proposal,” JHEP 10 (2011), 013, [arXiv:1107.5705].
  20. H. Golchin, M. M. Sheikh-Jabbari and A. Ghodsi, “Dual 2d CFT Identification of Extremal Black Rings from Holes,” JHEP 10 (2013), 194 [arXiv:1308.1478].
  21. S. Sadeghian, M. M. Sheikh-Jabbari and H. Yavartanoo, “On Classification of Geometries with SO(2,2) Symmetry,” JHEP 10 (2014), 081 [arXiv:1409.1635].
  22. S. Sadeghian, M. M. Sheikh-Jabbari, M. H. Vahidinia and H. Yavartanoo, “Near Horizon Structure of Extremal Vanishing Horizon Black Holes,” Nucl. Phys. B 900 (2015), 222-243 [arXiv:1504.03607].
  23. S. Sadeghian, M. M. Sheikh-Jabbari, M. H. Vahidinia and H. Yavartanoo, “Three Theorems on Near Horizon Extremal Vanishing Horizon Geometries,” Phys. Lett. B 753 (2016), 488-492 [arXiv:1512.06186].
  24. S. M. Noorbakhsh and M. H. Vahidinia, “Extremal Vanishing Horizon Kerr-AdS Black Holes at Ultraspinning Limit,” JHEP 01 (2018), 042, [arXiv:1708.08654].
  25. S. Sadeghian and M. H. Vahidinia, “AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT to dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT transition in the near horizon of asymptotically de Sitter solutions,” Phys. Rev. D 96 (2017) no.4, 044004 [arXiv:1703.01771].
  26. H. Demirchyan, A. Nersessian, S. Sadeghian and M. M. Sheikh-Jabbari, “Integrability of Geodesics in Near-Horizon Extremal Vanishing Horizon Myers–Perry Black Holes,” Phys. Atom. Nucl. 81 (2018) no.6, 907-911.
  27. J. Lee and R. M. Wald, “Local symmetries and constraints”, J. Math. Phys., 31,  725–743, (1990).
  28. A. Ashtekar, L. Bombelli, and R. Koul, “Phase space formulation of general relativity without a 3+1 splitting”, Lect. Notes Phys., 278,  356–359, (1987).
  29. A. Ashtekar, L. Bombelli, and O. Reula, “The covariant phase space of asymptotically flat gravitational fields”, in M. Francaviglia (ed.), Mechanics, Analysis and Geometry: 200 Years after Lagrange, 417-450, (1990).
  30. C. Crnkovic and E. Witten, “Covariant Description Of Canonical Formalism In Geometrical Theories”, In Hawking, S.W. (ed.), Israel, W. (ed.): Three hundred years of gravitation, 676-684, (1987).
  31. R. M. Wald, “Black hole entropy is the Noether charge”, Phys. Rev. D, 48,  3427–3431, (1993), [arXiv:gr-qc/9307038].
  32. V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for dynamical black hole entropy”, Phys. Rev. D, 50,  846–864, (1994), [arXiv:gr-qc/9403028].
  33. R. M. Wald and A. Zoupas, “A General definition of ’conserved quantities’ in general relativity and other theories of gravity”, Phys. Rev. D, 61,  084027, (2000), [arXiv:gr-qc/9911095].
  34. G. Barnich and F. Brandt, “Covariant theory of asymptotic symmetries, conservation laws and central charges,” Nucl. Phys. B 633 (2002), 3-82 [arXiv:hep-th/0111246].
  35. G. Barnich and G. Compere, “Surface charge algebra in gauge theories and thermodynamic integrability,” J. Math. Phys. 49 (2008), 042901 [arXiv:0708.2378].
  36. K. Hajian and M. M. Sheikh-Jabbari, “Solution Phase Space and Conserved Charges: A General Formulation for Charges Associated with Exact Symmetries”, Phys. Rev. D, 93,  4044074, (2016), [arXiv:1512.05584].
  37. M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional space-time,” Phys. Rev. Lett., 69, 1849, (1992), [arXiv:hep-th/9204099].
  38. J. de Boer, M. Johnstone, M. M. Sheikh-Jabbari and J. Simon, “Emergent IR Dual 2d CFTs in Charged AdS5 Black Holes,” Phys. Rev. D 85 (2012), 084039 [arXiv:1112.4664].
  39. M. Johnstone, M. M. Sheikh-Jabbari, J. Simon and H. Yavartanoo, “Extremal black holes and the first law of thermodynamics,” Phys. Rev. D 88 (2013) no.10, 101503 [arXiv:1305.3157].
  40. K. Hajian, A. Seraj and M. M. Sheikh-Jabbari, “NHEG Mechanics: Laws of Near Horizon Extremal Geometry (Thermo)Dynamics,” JHEP 03 (2014), 014 [arXiv:1310.3727].
  41. K. Hajian, A. Seraj, and M. Sheikh-Jabbari, “Near Horizon Extremal Geometry Perturbations: Dynamical Field Perturbations vs. Parametric Variations,” JHEP 1410 (2014) 111, [arXiv:1407.1992].
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com