Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Instance-Wise Adaptive Tuning and Caching for Vision-Language Models (2307.15983v1)

Published 29 Jul 2023 in cs.MM

Abstract: Large-scale vision-LLMs (LVLMs) pretrained on massive image-text pairs have achieved remarkable success in visual representations. However, existing paradigms to transfer LVLMs to downstream tasks encounter two primary challenges. Firstly, the text features remain fixed after being calculated and cannot be adjusted according to image features, which decreases the model's adaptability. Secondly, the model's output solely depends on the similarity between the text and image features, leading to excessive reliance on LVLMs. To address these two challenges, we introduce a novel two-branch model named the Instance-Wise Adaptive Tuning and Caching (ATC). Specifically, one branch implements our proposed ConditionNet, which guides image features to form an adaptive textual cache that adjusts based on image features, achieving instance-wise inference and improving the model's adaptability. The other branch introduces the similarities between images and incorporates a learnable visual cache, designed to decouple new and previous knowledge, allowing the model to acquire new knowledge while preserving prior knowledge. The model's output is jointly determined by the two branches, thus overcoming the limitations of existing methods that rely solely on LVLMs. Additionally, our method requires limited computing resources to tune parameters, yet outperforms existing methods on 11 benchmark datasets.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube