Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

Predicting Relative Populations of Protein Conformations without a Physics Engine Using AlphaFold2 (2307.14470v1)

Published 26 Jul 2023 in physics.bio-ph, physics.chem-ph, and q-bio.BM

Abstract: This paper presents a novel approach for predicting the relative populations of protein conformations using AlphaFold 2, an AI-powered method that has revolutionized biology by enabling the accurate prediction of protein structures. While AlphaFold 2 has shown exceptional accuracy and speed, it is designed to predict proteins' single ground state conformations and is limited in its ability to predict fold switching and the effects of mutations on conformational landscapes. Here, we demonstrate how AlphaFold 2 can directly predict the relative populations of different conformations of proteins and even accurately predict changes in those populations induced by mutations by subsampling multiple sequence alignments. We tested our method against NMR experiments on two proteins with drastically different amounts of available sequence data, Abl1 kinase and the granulocyte-macrophage colony-stimulating factor, and predicted changes in their relative state populations with accuracies in excess of 80%. Our method offers a fast and cost-effective way to predict protein conformations and their relative populations at even single point mutation resolution, making it a useful tool for pharmacology, analyzing NMR data, and studying the effects of evolution.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.