Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strategic Play By Resource-Bounded Agents in Security Games (2307.13778v1)

Published 25 Jul 2023 in cs.GT

Abstract: Many studies have shown that humans are "predictably irrational": they do not act in a fully rational way, but their deviations from rational behavior are quite systematic. Our goal is to see the extent to which we can explain and justify these deviations as the outcome of rational but resource-bounded agents doing as well as they can, given their limitations. We focus on the well-studied ranger-poacher game, where rangers are trying to protect a number of sites from poaching. We capture the computational limitations by modeling the poacher and the ranger as probabilistic finite automata (PFAs). We show that, with sufficiently large memory, PFAs learn to play the Nash equilibrium (NE) strategies of the game and achieve the NE utility. However, if we restrict the memory, we get more "human-like" behaviors, such as probability matching (i.e., visiting sites in proportion to the probability of a rhino being there), and avoiding sites where there was a bad outcome (e.g., the poacher was caught by the ranger), that we also observed in experiments conducted on Amazon Mechanical Turk. Interestingly, we find that adding human-like behaviors such as probability matching and overweighting significant events (like getting caught) actually improves performance, showing that this seemingly irrational behavior can be quite rational.

Summary

We haven't generated a summary for this paper yet.