Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounded Rationality in Las Vegas: Probabilistic Finite Automata PlayMulti-Armed Bandits (2006.16950v1)

Published 30 Jun 2020 in cs.AI and cs.LG

Abstract: While traditional economics assumes that humans are fully rational agents who always maximize their expected utility, in practice, we constantly observe apparently irrational behavior. One explanation is that people have limited computational power, so that they are, quite rationally, making the best decisions they can, given their computational limitations. To test this hypothesis, we consider the multi-armed bandit (MAB) problem. We examine a simple strategy for playing an MAB that can be implemented easily by a probabilistic finite automaton (PFA). Roughly speaking, the PFA sets certain expectations, and plays an arm as long as it meets them. If the PFA has sufficiently many states, it performs near-optimally. Its performance degrades gracefully as the number of states decreases. Moreover, the PFA acts in a "human-like" way, exhibiting a number of standard human biases, like an optimism bias and a negativity bias.

Summary

We haven't generated a summary for this paper yet.