Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 452 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Feature Importance Measurement based on Decision Tree Sampling (2307.13333v1)

Published 25 Jul 2023 in cs.LG

Abstract: Random forest is effective for prediction tasks but the randomness of tree generation hinders interpretability in feature importance analysis. To address this, we proposed DT-Sampler, a SAT-based method for measuring feature importance in tree-based model. Our method has fewer parameters than random forest and provides higher interpretability and stability for the analysis in real-world problems. An implementation of DT-Sampler is available at https://github.com/tsudalab/DT-sampler.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com