Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Neural Memory Decoding with EEG Data and Representation Learning (2307.13181v2)

Published 25 Jul 2023 in cs.LG and q-bio.NC

Abstract: We describe a method for the neural decoding of memory from EEG data. Using this method, a concept being recalled can be identified from an EEG trace with an average top-1 accuracy of about 78.4% (chance 4%). The method employs deep representation learning with supervised contrastive loss to map an EEG recording of brain activity to a low-dimensional space. Because representation learning is used, concepts can be identified even if they do not appear in the training data set. However, reference EEG data must exist for each such concept. We also show an application of the method to the problem of information retrieval. In neural information retrieval, EEG data is captured while a user recalls the contents of a document, and a list of links to predicted documents is produced.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.