Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Cosmological baryon spread and impact on matter clustering in CAMELS (2307.11832v1)

Published 21 Jul 2023 in astro-ph.GA and astro-ph.CO

Abstract: We quantify the cosmological spread of baryons relative to their initial neighboring dark matter distribution using thousands of state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project. We show that dark matter particles spread relative to their initial neighboring distribution owing to chaotic gravitational dynamics on spatial scales comparable to their host dark matter halo. In contrast, gas in hydrodynamic simulations spreads much further from the initial neighboring dark matter owing to feedback from supernovae (SNe) and Active Galactic Nuclei (AGN). We show that large-scale baryon spread is very sensitive to model implementation details, with the fiducial \textsc{SIMBA} model spreading $\sim$40\% of baryons $>$1\,Mpc away compared to $\sim$10\% for the IllustrisTNG and \textsc{ASTRID} models. Increasing the efficiency of AGN-driven outflows greatly increases baryon spread while increasing the strength of SNe-driven winds can decrease spreading due to non-linear coupling of stellar and AGN feedback. We compare total matter power spectra between hydrodynamic and paired $N$-body simulations and demonstrate that the baryonic spread metric broadly captures the global impact of feedback on matter clustering over variations of cosmological and astrophysical parameters, initial conditions, and galaxy formation models. Using symbolic regression, we find a function that reproduces the suppression of power by feedback as a function of wave number ($k$) and baryonic spread up to $k \sim 10\,h$\,Mpc${-1}$ while highlighting the challenge of developing models robust to variations in galaxy formation physics implementation.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.