Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An estimate for the numerical radius of the Hilbert space operators and a numerical radius inequality (2307.11135v1)

Published 20 Jul 2023 in math.FA and math.OA

Abstract: We provide a number of sharp inequalities involving the usual operator norms of Hilbert space operators and powers of the numerical radii. Based on the traditional convexity inequalities for nonnegative real numbers and some generalize earlier numerical radius inequalities, operator. Precisely, we prove that if $\A_i,\B_i,\X_i\in\bh$ ($i=1,2,\cdots,n$), $m\in\N$, $p,q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $\phi$ and $\psi$ are non-negative functions on $[0,\infty)$ which are continuous such that $\phi(t)\psi(t)=t$ for all $t \in [0,\infty)$, then \begin{equation*} w{2r}\bra{\sum_{i=1}{n}\X_i\A_im\B_i}\leq \frac{n{2r-1}}{m}\sum_{j=1}{m}\norm{\sum_{i=1}{n}\frac{1}{p}S_{i,j}{pr}+\frac{1}{q}T_{i,j}{qr}}-r_0\inf_{\norm{x}=1}\rho(\xi), \end{equation*} where $r_0=\min{\frac{1}{p},\frac{1}{q}}$, $S_{i,j}=\X_i\phi2\bra{\abs{\A_i{j*}}}\X_i*$, $T_{i,j}=\bra{\A_i{m-j}\B_i}*\psi2\bra{\abs{\A_ij}}\A_i{m-j}\B_i$ and $$\rho(x)=\frac{n{2r-1}}{m}\sum_{j=1}{m}\sum_{i=1}{n}\bra{\seq{S_{i,j}r\xi,\xi}{\frac{p}{2}}-\seq{T_{i,j}r\xi,\xi}{\frac{q}{2}}}2.$$

Citations (1)

Summary

We haven't generated a summary for this paper yet.