Further refinements of generalized numerical radius inequalities for Hilbert space operators (1805.07596v1)
Abstract: In this paper, we show some refinements of generalized numerical radius inequalities involving the Young and Heinz inequalities. In particular, we present \begin{align*} w_{p}{p}(A_{1}{}T_{1}B_{1},...,A_{n}{}T_{n}B_{n})\leq\frac{n{1-\frac{1}{r}}}{2{\frac{1}{r}}}\Big|\sum_{i=1}{n}[B_{i}{*} f{2}(|T_{i}|)B_{i}]{rp}+[A_{i}{}g{2}(|T_{i}{}|)A_{i}]{rp}\Big|{\frac{1}{r}} -\inf_{|x|=1}\eta(x), \end{align*} where $T_{i}, A_{i}, B_{i} \in {\mathbb B}({\mathscr H})\,\,(1\leq i\leq n)$, $f$ and $g$ are nonnegative continuous functions on $[0, \infty)$ satisfying $f(t)g(t)=t$ for all $t\in [0, \infty)$, $p, r\geq 1$, $N\in {\mathbb N}$ and \begin{align*} \eta(x)= \frac{1}{2}\sum_{i=1}{n}\sum_{j=1}{N} \Big(\sqrt[2{j}]{ \langle (A_{i}{}g{2}(|T_{i}{}|)A_{i}){p}x, x\rangle{2{j-1}-k_{j}} \langle (B_{i}{*} f{2}(|T_{i}|)B_{i}){p}x, x\rangle{k_j}}\quad-\sqrt[2{j}]{ \langle (B_{i}{*}f{2}(|T_{i}|)B_{i}){p}x, x\rangle{k_{j}+1} \langle (A_{i}{*} g{2}(|T_{i}{*}|)A_{i}){p}x, x\rangle{2{j-1}-k_{j}-1}}\Big){2}. \end{align*}