Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Globally Normalising the Transducer for Streaming Speech Recognition (2307.10975v1)

Published 20 Jul 2023 in eess.AS, cs.LG, and cs.SD

Abstract: The Transducer (e.g. RNN-Transducer or Conformer-Transducer) generates an output label sequence as it traverses the input sequence. It is straightforward to use in streaming mode, where it generates partial hypotheses before the complete input has been seen. This makes it popular in speech recognition. However, in streaming mode the Transducer has a mathematical flaw which, simply put, restricts the model's ability to change its mind. The fix is to replace local normalisation (e.g. a softmax) with global normalisation, but then the loss function becomes impossible to evaluate exactly. A paper proposes to solve this by approximating the model, severely degrading performance. Instead, this paper proposes to approximate the loss function, allowing global normalisation to apply to a state-of-the-art streaming model. Global normalisation reduces its word error rate by 9-11% relative, closing almost half the gap between streaming and lookahead mode.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Rogier van Dalen (14 papers)

Summary

We haven't generated a summary for this paper yet.