Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Examples and counterexamples in Ehrhart theory (2307.10852v4)

Published 20 Jul 2023 in math.CO, math.AC, and math.RA

Abstract: This article provides a comprehensive exposition about inequalities that the coefficients of Ehrhart polynomials and $h*$-polynomials satisfy under various assumptions. We pay particular attention to the properties of Ehrhart positivity as well as unimodality, log-concavity and real-rootedness for $h*$-polynomials. We survey inequalities that arise when the polytope has different normality properties. We include statements previously unknown in the Ehrhart theory setting, as well as some original contributions in this topic. We address numerous variations of the conjecture asserting that IDP polytopes have a unimodal $h*$-polynomial, and construct concrete examples that show that these variations of the conjecture are false. Explicit emphasis is put on polytopes arising within algebraic combinatorics. Furthermore, we describe and construct polytopes having pathological properties on their Ehrhart coefficients and roots, and we indicate for the first time a connection between the notions of Ehrhart positivity and $h*$-real-rootedness. We investigate the log-concavity of the sequence of evaluations of an Ehrhart polynomial at the non-negative integers. We conjecture that IDP polytopes have a log-concave Ehrhart series. Many additional problems and challenges are proposed.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.