Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards fully integrated photonic backpropagation training and inference using on-chip nonlinear activation and gradient functions (2307.10179v1)

Published 16 Jun 2023 in cs.ET and physics.optics

Abstract: Gradient descent-based backpropagation training is widely used in many neural network systems. However, photonic implementation of such method is not straightforward mainly since having both the nonlinear activation function and its gradient using standard integrated photonic components is challenging. Here, we demonstrate the realization of two commonly used neural nonlinear activation functions and their gradients on a silicon photonic platform. Our method leverages the nonlinear electro-optic response of a micro-disk modulator. As a proof of concept, the experimental results are incorporated into a neural network simulation platform to classify MNIST handwritten digits dataset where we classification accuracies of more than 97\% are achieved that are on par with those of ideal nonlinearities and gradients.

Summary

We haven't generated a summary for this paper yet.