Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

All-Chalcogenide Programmable All-Optical Deep Neural Networks (2102.10398v3)

Published 20 Feb 2021 in physics.optics and cs.ET

Abstract: Deeplearning algorithms are revolutionising many aspects of modern life. Typically, they are implemented in CMOS-based hardware with severely limited memory access times and inefficient data-routing. All-optical neural networks without any electro-optic conversions could alleviate these shortcomings. However, an all-optical nonlinear activation function, which is a vital building block for optical neural networks, needs to be developed efficiently on-chip. Here, we introduce and demonstrate both optical synapse weighting and all-optical nonlinear thresholding using two different effects in a chalcogenide material photonic platform. We show how the structural phase transitions in a wide-bandgap phase-change material enables storing the neural network weights via non-volatile photonic memory, whilst resonant bond destabilisation is used as a nonlinear activation threshold without changing the material. These two different transitions within chalcogenides enable programmable neural networks with near-zero static power consumption once trained, in addition to picosecond delays performing inference tasks not limited by wire charging that limit electrical circuits; for instance, we show that nanosecond-order weight programming and near-instantaneous weight updates enable accurate inference tasks within 20 picoseconds in a 3-layer all-optical neural network. Optical neural networks that bypass electro-optic conversion altogether hold promise for network-edge machine learning applications where decision-making in real-time are critical, such as for autonomous vehicles or navigation systems such as signal pre-processing of LIDAR systems.

Citations (8)

Summary

We haven't generated a summary for this paper yet.