Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CBSeq: A Channel-level Behavior Sequence For Encrypted Malware Traffic Detection (2307.09002v1)

Published 18 Jul 2023 in cs.CR

Abstract: Machine learning and neural networks have become increasingly popular solutions for encrypted malware traffic detection. They mine and learn complex traffic patterns, enabling detection by fitting boundaries between malware traffic and benign traffic. Compared with signature-based methods, they have higher scalability and flexibility. However, affected by the frequent variants and updates of malware, current methods suffer from a high false positive rate and do not work well for unknown malware traffic detection. It remains a critical task to achieve effective malware traffic detection. In this paper, we introduce CBSeq to address the above problems. CBSeq is a method that constructs a stable traffic representation, behavior sequence, to characterize attacking intent and achieve malware traffic detection. We novelly propose the channels with similar behavior as the detection object and extract side-channel content to construct behavior sequence. Unlike benign activities, the behavior sequences of malware and its variant's traffic exhibit solid internal correlations. Moreover, we design the MSFormer, a powerful Transformer-based multi-sequence fusion classifier. It captures the internal similarity of behavior sequence, thereby distinguishing malware traffic from benign traffic. Our evaluations demonstrate that CBSeq performs effectively in various known malware traffic detection and exhibits superior performance in unknown malware traffic detection, outperforming state-of-the-art methods.

Citations (7)

Summary

We haven't generated a summary for this paper yet.