Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Detection and Clustering of Malicious TLS Flows (2109.03878v3)

Published 8 Sep 2021 in cs.CR

Abstract: Malware abuses TLS to encrypt its malicious traffic, preventing examination by content signatures and deep packet inspection. Network detection of malicious TLS flows is an important, but challenging, problem. Prior works have proposed supervised machine learning detectors using TLS features. However, by trying to represent all malicious traffic, supervised binary detectors produce models that are too loose, thus introducing errors. Furthermore, they do not distinguish flows generated by different malware. On the other hand, supervised multi-class detectors produce tighter models and can classify flows by malware family, but require family labels, which are not available for many samples. To address these limitations, this work proposes a novel unsupervised approach to detect and cluster malicious TLS flows. Our approach takes as input network traces from sandboxes. It clusters similar TLS flows using 90 features that capture properties of the TLS client, TLS server, certificate, and encrypted payload; and uses the clusters to build an unsupervised detector that can assign a malicious flow to the cluster it belongs to, or determine it is benign. We evaluate our approach using 972K traces from a commercial sandbox and 35M TLS flows from a research network. Our clustering shows very high precision and recall with an F1 score of 0.993. We compare our unsupervised detector with two state-of-the-art approaches, showing that it outperforms both. The false detection rate of our detector is 0.032% measured over four months of traffic.

Citations (7)

Summary

We haven't generated a summary for this paper yet.