Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning from Exemplary Explanations (2307.06026v1)

Published 12 Jul 2023 in cs.LG and cs.CV

Abstract: eXplanation Based Learning (XBL) is a form of Interactive Machine Learning (IML) that provides a model refining approach via user feedback collected on model explanations. Although the interactivity of XBL promotes model transparency, XBL requires a huge amount of user interaction and can become expensive as feedback is in the form of detailed annotation rather than simple category labelling which is more common in IML. This expense is exacerbated in high stakes domains such as medical image classification. To reduce the effort and expense of XBL we introduce a new approach that uses two input instances and their corresponding Gradient Weighted Class Activation Mapping (GradCAM) model explanations as exemplary explanations to implement XBL. Using a medical image classification task, we demonstrate that, using minimal human input, our approach produces improved explanations (+0.02, +3%) and achieves reduced classification performance (-0.04, -4%) when compared against a model trained without interactions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.