Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact of Feedback Type on Explanatory Interactive Learning (2209.12476v1)

Published 26 Sep 2022 in cs.AI and cs.HC

Abstract: Explanatory Interactive Learning (XIL) collects user feedback on visual model explanations to implement a Human-in-the-Loop (HITL) based interactive learning scenario. Different user feedback types will have different impacts on user experience and the cost associated with collecting feedback since different feedback types involve different levels of image annotation. Although XIL has been used to improve classification performance in multiple domains, the impact of different user feedback types on model performance and explanation accuracy is not well studied. To guide future XIL work we compare the effectiveness of two different user feedback types in image classification tasks: (1) instructing an algorithm to ignore certain spurious image features, and (2) instructing an algorithm to focus on certain valid image features. We use explanations from a Gradient-weighted Class Activation Mapping (GradCAM) based XIL model to support both feedback types. We show that identifying and annotating spurious image features that a model finds salient results in superior classification and explanation accuracy than user feedback that tells a model to focus on valid image features.

Citations (6)

Summary

We haven't generated a summary for this paper yet.