Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Dispersive Non-reciprocity between a Qubit and a Cavity (2307.05298v3)

Published 7 Jul 2023 in quant-ph

Abstract: The dispersive interaction between a qubit and a cavity is ubiquitous in circuit and cavity quantum electrodynamics. It describes the frequency shift of one quantum mode in response to excitations in the other, and in closed systems is necessarily bidirectional, i.e.~reciprocal. Here, we present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity, arising from a common coupling to dissipative intermediary modes with broken time reversal symmetry. We characterize the qubit-cavity dynamics, including asymmetric frequency pulls and photon shot-noise dephasing, under varying degrees of non-reciprocity by tuning the magnetic field bias of a ferrite component in situ. Furthermore, we show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model, which provides a compact description of the non-reciprocal interaction without requiring a full understanding of the complex dynamics of the intermediary system. Our result provides an example of quantum non-reciprocal phenomena beyond the typical paradigms of non-Hermitian Hamiltonians and cascaded systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. A. Kamal, J. Clarke, and M. H. Devoret, Noiseless non-reciprocity in a parametric active device, Nature Physics 7, 311 (2011).
  2. S. Yao and Z. Wang, Edge states and topological invariants of non-hermitian systems, Phys. Rev. Lett. 121, 086803 (2018).
  3. S. Gopalakrishnan and M. J. Gullans, Entanglement and purification transitions in non-hermitian quantum mechanics, Phys. Rev. Lett. 126, 170503 (2021).
  4. K. Kawabata, T. Numasawa, and S. Ryu, Entanglement phase transition induced by the non-hermitian skin effect, Phys. Rev. X 13, 021007 (2023).
  5. P. R. K Stannigel and P. Zoller, Driven-dissipative preparation of entangled states in cascaded quantum-optical networks, New Journal of Physics 14, 063014 (2012).
  6. A. Metelmann and A. A. Clerk, Nonreciprocal photon transmission and amplification via reservoir engineering, Physical Review X 5, 021025 (2015).
  7. N. Gheeraert, S. Kono, and Y. Nakamura, Programmable directional emitter and receiver of itinerant microwave photons in a waveguide, Physical Review A 102, 053720 (2020).
  8. C. Joshi, F. Yang, and M. Mirhosseini, Resonance fluorescence of a chiral artificial atom, Physical Review X 13, 021039 (2023).
  9. Y.-X. Wang, C. Wang, and A. A. Clerk, Quantum nonreciprocal interactions via dissipative gauge symmetry, PRX Quantum 4, 010306 (2023).
  10. H. B. G. Casimir, On onsager’s principle of microscopic reversibility, Reviews of Modern Physics 17, 343 (1945).
  11. H. M. Wiseman, Quantum theory of continuous feedback, Phys. Rev. A 49, 2133 (1994).
  12. S. Lieu, Y.-J. Liu, and A. V. Gorshkov, Candidate for a passively-protected quantum memory in two dimensions, arXiv preprint arXiv:2205.09767 .
  13. G. H. Fredrickson and H. C. Andersen, Kinetic ising model of the glass transition, Phys. Rev. Lett. 53, 1244 (1984).
  14. G. Parisi, Asymmetric neural networks and the process of learning, Journal of Physics A: Mathematical and General 19, L675–L680 (1986).
  15. B. Derrida, Dynamical phase transition in nonsymmetric spin glasses, Journal of Physics A: Mathematical and General 20, L721–L725 (1987).
  16. F. Ritort and P. Sollich, Glassy dynamics of kinetically constrained models, Advances in Physics 52, 219–342 (2003).
  17. C. E. Fay and R. L. Comstock, Operation of the ferrite junction circulator, IEEE Transactions on Microwave Theory and Techniques 13, 15 (1965).
  18. C. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer Series in Synergetics (Springer, Berlin, 2004).
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube