Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fast Geometric Multigrid Method for Curved Surfaces (2307.04886v1)

Published 10 Jul 2023 in cs.CG

Abstract: We introduce a geometric multigrid method for solving linear systems arising from variational problems on surfaces in geometry processing, Gravo MG. Our scheme uses point clouds as a reduced representation of the levels of the multigrid hierarchy to achieve a fast hierarchy construction and to extend the applicability of the method from triangle meshes to other surface representations like point clouds, nonmanifold meshes, and polygonal meshes. To build the prolongation operators, we associate each point of the hierarchy to a triangle constructed from points in the next coarser level. We obtain well-shaped candidate triangles by computing graph Voronoi diagrams centered around the coarse points and determining neighboring Voronoi cells. Our selection of triangles ensures that the connections of each point to points at adjacent coarser and finer levels are balanced in the tangential directions. As a result, we obtain sparse prolongation matrices with three entries per row and fast convergence of the solver.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Multilevel Solvers for Unstructured Surface Meshes. SIAM J. Sci. Comput. 26, 4 (2005), 1146–1165. https://doi.org/10.1137/S1064827503430138
  2. Marc Alexa and Max Wardetzky. 2011. Discrete Laplacians on General Polygonal Meshes. ACM Trans. Graph. 30, 4 (2011), 102:1–102:10.
  3. PyAMG: Algebraic Multigrid Solvers in Python. Journal of Open Source Software 7, 72 (2022), 4142. https://doi.org/10.21105/joss.04142
  4. James H Bramble. 1993. Multigrid Methods. Chapman and Hall/CRC.
  5. Achi Brandt. 1986. Algebraic multigrid theory: The symmetric case. Appl. Math. Comput. 19, 1 (1986), 23–56. https://doi.org/10.1016/0096-3003(86)90095-0
  6. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw. 35, 3 (2008), 22:1–22:14. https://doi.org/10.1145/1391989.1391995
  7. A survey of direct methods for sparse linear systems. Acta Numer. 25 (2016), 383–566. https://doi.org/10.1017/S0962492916000076
  8. Solving the Fluid Pressure Poisson Equation Using Multigrid - Evaluation and Improvements. IEEE Trans. Vis. Comput. Graph. 22, 11 (2016), 2480–2492. https://doi.org/10.1109/TVCG.2015.2511734
  9. Martin Erwig. 2000. The graph Voronoi diagram with applications. Networks 36, 3 (2000), 156–163.
  10. Bianca Falcidieno. 2007. Bringing the Semantics into Digital Shapes: the AIM@SHAPE Approach. In Eurographics Italian Chapter Conference, Raffaele De Amicis and Giuseppe Conti (Eds.). The Eurographics Association. https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2007/103-106
  11. Joachim Georgii and Rüdiger Westermann. 2006. A multigrid framework for real-time simulation of deformable bodies. Comput. Graph. 30, 3 (2006), 408–415. https://doi.org/10.1016/j.cag.2006.02.016
  12. Subdivision-based multilevel methods for large scale engineering simulation of thin shells. In ACM Symposium on Solid Modeling and Applications. ACM, 265–272. https://doi.org/10.1145/566282.566321
  13. Eigen v3. http://eigen.tuxfamily.org.
  14. Wolfgang Hackbusch. 1985. Multi-grid methods and applications. Springer series in computational mathematics, Vol. 4. Springer.
  15. Philipp Herholz and Marc Alexa. 2018. Factor once: reusing cholesky factorizations on sub-meshes. ACM Trans. Graph. 37, 6 (2018), 230. https://doi.org/10.1145/3272127.3275107
  16. Philipp Herholz and Olga Sorkine-Hornung. 2020. Sparse cholesky updates for interactive mesh parameterization. ACM Trans. Graph. 39, 6 (2020), 202:1–202:14. https://doi.org/10.1145/3414685.3417828
  17. Hugues Hoppe. 1996. Progressive Meshes. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, New Orleans, LA, USA, August 4-9, 1996, John Fujii (Ed.). ACM, 99–108. https://dl.acm.org/citation.cfm?id=237216
  18. Intel Corporation. 2023. oneMKL PARDISO - Parallel Direct Sparse Solver Interface. https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-1/onemkl-pardiso-parallel-direct-sparse-solver-iface.html. Accessed: April 17, 2023.
  19. Constrainable Multigrid for Cloth. Comput. Graph. Forum 32, 7 (2013), 31–39. https://doi.org/10.1111/cgf.12209
  20. Misha Kazhdan and Hugues Hoppe. 2019. An Adaptive Multi-Grid Solver for Applications in Computer Graphics. Comput. Graph. Forum 38, 1 (2019), 138–150. https://doi.org/10.1111/cgf.13449
  21. Can mean-curvature flow be modified to be non-singular?. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 1745–1754.
  22. Poisson surface reconstruction. In Symposium on Geometry Processing (ACM International Conference Proceeding Series, Vol. 256). Eurographics Association, 61–70.
  23. Tanks and Temples: Benchmarking Large-Scale Scene Reconstruction. ACM Transactions on Graphics 36, 4 (2017).
  24. A General Framework for Mesh Decimation. In Proceedings of the Graphics Interface 1998 Conference, June 18-20, 1998, Vancouver, BC, Canada, Wayne A. Davis, Kellogg S. Booth, and Alain Fournier (Eds.). Canadian Human-Computer Communications Society, 43–50.
  25. Efficient preconditioning of laplacian matrices for computer graphics. ACM Trans. Graph. 32, 4 (2013), 142:1–142:15. https://doi.org/10.1145/2461912.2461992
  26. Dilip Krishnan and Richard Szeliski. 2011. Multigrid and multilevel preconditioners for computational photography. ACM Trans. Graph. 30, 6 (2011), 177. https://doi.org/10.1145/2070781.2024211
  27. Jian Liang and Hongkai Zhao. 2013. Solving Partial Differential Equations on Point Clouds. SIAM J. Sci. Comput. 35 (2013), A1461–A1486.
  28. Surface Multigrid via Intrinsic Prolongation. ACM Trans. Graph. 40, 4 (2021).
  29. A Parallel Multigrid Poisson Solver for Fluids Simulation on Large Grids. In Symposium on Computer Animation. Eurographics Association, 65–73.
  30. Ahmad Nasikun and Klaus Hildebrandt. 2022. The Hierarchical Subspace Iteration Method for Laplace–Beltrami Eigenproblems. ACM Trans. Graph. 41, 2 (2022), 17:1–17:14. https://doi.org/10.1145/3495208
  31. Fair morse functions for extracting the topological structure of a surface mesh. ACM Trans. Graph. 23, 3 (2004), 613–622. https://doi.org/10.1145/1015706.1015769
  32. Adaptive deformations with fast tight bounds. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2007, San Diego, California, USA, August 2-4, 2007, Michael Gleicher and Daniel Thalmann (Eds.). Eurographics Association, 181–190. https://doi.org/10.2312/SCA/SCA07/181-190
  33. Poisson image editing. ACM Trans. Graph. 22, 3 (2003), 313–318. https://doi.org/10.1145/882262.882269
  34. Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experim. Math. 2 (1993), 15–36.
  35. Nicolas Ray and Bruno Lévy. 2003. Hierarchical Least Squares Conformal Map. In Pacific Conference on Graphics and Applications. IEEE, 263–270. https://doi.org/10.1109/PCCGA.2003.1238268
  36. Nicholas Sharp and Keenan Crane. 2020. A Laplacian for Nonmanifold Triangle Meshes. Comput. Graph. Forum 39, 5 (2020), 69–80. https://doi.org/10.1111/cgf.14069
  37. A fast multigrid algorithm for mesh deformation. ACM Trans. Graph. 25, 3 (2006), 1108–1117. https://doi.org/10.1145/1141911.1142001
  38. Out-of-core multigrid solver for streaming meshes. ACM Trans. Graph. 28, 5 (2009), 173. https://doi.org/10.1145/1618452.1618519
  39. Computational design of rubber balloons. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 835–844.
  40. K. Stüben. 2001. A review of algebraic multigrid. J. Comput. Appl. Math. 128, 1 (2001), 281–309. https://doi.org/10.1016/S0377-0427(00)00516-1 Numerical Analysis 2000. Vol. VII: Partial Differential Equations.
  41. A multigrid approach for generating harmonic measured foliations. Computers & Graphics 102 (2022), 380–389. https://doi.org/10.1016/j.cag.2021.10.003
  42. Parallel Multigrid for Nonlinear Cloth Simulation. Comput. Graph. Forum 37, 7 (2018), 131–141. https://doi.org/10.1111/cgf.13554
  43. Discrete quadratic curvature energies. Computer Aided Geometric Design 24, 8-9 (2007), 499–518.
Citations (2)

Summary

We haven't generated a summary for this paper yet.