Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing Parallel Communication in Algebraic Multigrid through Sparsification (1512.04629v1)

Published 15 Dec 2015 in cs.DC and math.NA

Abstract: Algebraic multigrid (AMG) is an $\mathcal{O}(n)$ solution process for many large sparse linear systems. A hierarchy of progressively coarser grids is constructed that utilize complementary relaxation and interpolation operators. High-energy error is reduced by relaxation, while low-energy error is mapped to coarse-grids and reduced there. However, large parallel communication costs often limit parallel scalability. As the multigrid hierarchy is formed, each coarse matrix is formed through a triple matrix product. The resulting coarse-grids often have significantly more nonzeros per row than the original fine-grid operator, thereby generating high parallel communication costs on coarse-levels. In this paper, we introduce a method that systematically removes entries in coarse-grid matrices after the hierarchy is formed, leading to an improved communication costs. We sparsify by removing weakly connected or unimportant entries in the matrix, leading to improved solve time. The main trade-off is that if the heuristic identifying unimportant entries is used too aggressively, then AMG convergence can suffer. To counteract this, the original hierarchy is retained, allowing entries to be reintroduced into the solver hierarchy if convergence is too slow. This enables a balance between communication cost and convergence, as necessary. In this paper we present new algorithms for reducing communication and present a number of computational experiments in support.

Citations (38)

Summary

We haven't generated a summary for this paper yet.