Gibbs measures for a Hard-Core model with a countable set of states (2307.03432v1)
Abstract: In this paper, we focus on studying non-probability Gibbs measures for a Hard Core (HC) model on a Cayley tree of order $k\geq 2$, where the set of integers $\mathbb Z$ is the set of spin values. It is well-known that each Gibbs measure, whether it be a gradient or non-probability measure, of this model corresponds to a boundary law. A boundary law can be thought of as an infinite-dimensional vector function defined at the vertices of the Cayley tree, which satisfies a nonlinear functional equation. Furthermore, every normalisable boundary law corresponds to a Gibbs measure. However, a non-normalisable boundary law can define gradient or non-probability Gibbs measures. In this paper, we investigate the conditions for uniqueness and non-uniqueness of translation-invariant and periodic non-probability Gibbs measures for the HC-model on a Cayley tree of any order $k\geq 2$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.