Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Gibbs measures for a Hard-Core model with a countable set of states (2307.03432v1)

Published 7 Jul 2023 in math.PR, math-ph, and math.MP

Abstract: In this paper, we focus on studying non-probability Gibbs measures for a Hard Core (HC) model on a Cayley tree of order $k\geq 2$, where the set of integers $\mathbb Z$ is the set of spin values. It is well-known that each Gibbs measure, whether it be a gradient or non-probability measure, of this model corresponds to a boundary law. A boundary law can be thought of as an infinite-dimensional vector function defined at the vertices of the Cayley tree, which satisfies a nonlinear functional equation. Furthermore, every normalisable boundary law corresponds to a Gibbs measure. However, a non-normalisable boundary law can define gradient or non-probability Gibbs measures. In this paper, we investigate the conditions for uniqueness and non-uniqueness of translation-invariant and periodic non-probability Gibbs measures for the HC-model on a Cayley tree of any order $k\geq 2$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube