Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the convexity of static output feedback control synthesis for systems with lossless nonlinearities (2307.03330v1)

Published 6 Jul 2023 in eess.SY, cs.SY, math.OC, and physics.flu-dyn

Abstract: Computing a stabilizing static output-feedback (SOF) controller is an NP-hard problem, in general. Yet, these controllers have amassed popularity in recent years because of their practical use in feedback control applications, such as fluid flow control and sensor/actuator selection. The inherent difficulty of synthesizing SOF controllers is rooted in solving a series of non-convex problems that make the solution computationally intractable. In this note, we show that SOF synthesis is a convex problem for the specific case of systems with a lossless (i.e., energy-conserving) nonlinearity. Our proposed method ensures asymptotic stability of an SOF controller by enforcing the lossless behavior of the nonlinearity using a quadratic constraint approach. In particular, we formulate a bilinear matrix inequality~(BMI) using the approach, then show that the resulting BMI can be recast as a linear matrix inequality (LMI). The resulting LMI is a convex problem whose feasible solution, if one exists, yields an asymptotically stabilizing SOF controller.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. D. S. Bernstein, “Some open problems in matrix theory arising in linear systems and control,” Linear Algebra and Its Applications, 1992.
  2. V. D. Blondel and J. N. Tsitsiklis, “A survey of computational complexity results in systems and control,” Automatica, vol. 36, no. 9, pp. 1249–1274, 2000.
  3. V. L. Syrmos, C. T. Abdallah, P. Dorato, and K. Grigoriadis, “Static output feedback—a survey,” Automatica, vol. 33, no. 2, pp. 125–137, 1997.
  4. Q. T. Dinh, S. Gumussoy, W. Michiels, and M. Diehl, “Combining convex–concave decompositions and linearization approaches for solving BMIs, with application to static output feedback,” IEEE Transactions on Automatic Control, vol. 57, no. 6, pp. 1377–1390, 2011.
  5. L. El Ghaoui, F. Oustry, and M. AitRami, “A cone complementarity linearization algorithm for static output-feedback and related problems,” IEEE transactions on automatic control, vol. 42, no. 8, pp. 1171–1176, 1997.
  6. Y.-Y. Cao, J. Lam, and Y.-X. Sun, “Static output feedback stabilization: an ILMI approach,” Automatica, vol. 34, no. 12, pp. 1641–1645, 1998.
  7. T. Iwasaki and R. Skelton, “The xy-centring algorithm for the dual LMI problem: a new approach to fixed-order control design,” International Journal of Control, vol. 62, no. 6, pp. 1257–1272, 1995.
  8. H. T. Toivonen and P. M. Mäkilä, “A descent Anderson-Moore algorithm for optimal decentralized control,” Automatica, vol. 21, no. 6, pp. 743–744, 1985.
  9. V. Blondel and J. N. Tsitsiklis, “NP-hardness of some linear control design problems,” SIAM Journal of Control and Optimization, 1997.
  10. M. Dalsmo and O. Egeland, “H∞subscript𝐻H_{\infty}italic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT control of nonlinear passive systems by output feedback,” in Proceedings of 34th IEEE Conference on Decision and Control, vol. 1, 1995, pp. 351–352.
  11. D. Zhao and J.-L. Wang, “Robust static output feedback design for polynomial nonlinear systems,” International journal of robust and nonlinear control, vol. 20, no. 14, pp. 1637–1654, 2010.
  12. S. Saat and S. K. Nguang, “Nonlinear H∞subscript𝐻H_{\infty}italic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT output feedback control with integrator for polynomial discrete-time systems,” vol. 25, no. 7, pp. 1051–1065, 2015.
  13. M. Ekramian, “Static output feedback problem for Lipschitz nonlinear systems,” Journal of the Franklin Institute, vol. 357, no. 3, pp. 1457–1472, 2020.
  14. A. Astolfi and P. Colaneri, “A Hamilton-Jacobi setup for the static output feedback stabilization of nonlinear systems,” IEEE transactions on automatic control, vol. 47, no. 12, pp. 2038–2041, 2002.
  15. A. Kalur, P. Seiler, and M. Hemati, “Stability and performance analysis of nonlinear and non-normal systems using quadratic constraints,” AIAA Aerospace Sciences Meeting, AIAA Paper 2020-0833, January 2020.
  16. C. Liu and D. F. Gayme, “Input-output inspired method for permissible perturbation amplitude of transitional wall-bounded shear flows,” Phys. Rev. E, vol. 102, p. 063108, Dec 2020.
  17. A. Kalur, P. Seiler, and M. S. Hemati, “Nonlinear stability analysis of transitional flows using quadratic constraints,” Physical Review Fluids, vol. 6, no. 4, p. 044401, 2021.
  18. A. Kalur, T. Mushtaq, P. Seiler, and M. S. Hemati, “Estimating regions of attraction for transitional flows using quadratic constraints,” IEEE Control Systems Letters, pp. 1–1, 2021.
  19. T. Mushtaq, P. Seiler, and M. Hemati, “Feedback control of transitional flows: A framework for controller verification using quadratic constraints,” in AIAA AVIATION 2021 FORUM, 2021, p. 2825.
  20. A. S. Sharma, J. F. Morrison, B. J. McKeon, D. J. N. L. Limebeer, W. H. Koberg, and S. J. Sherwin, “Relaminarisation of R⁢eτ=100𝑅subscript𝑒𝜏100{R}e_{\tau}=100italic_R italic_e start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT = 100 channel flow with globally stabilising linear feedback control,” Physics of Fluids, vol. 23, no. 12, Dec 2011.
  21. P. H. Heins, B. L. Jones, and A. S. Sharma, “Passivity-based output-feedback control of turbulent channel flow,” Automatica, 2016.
  22. H. Yao, Y. Sun, T. Mushtaq, and M. Hemati, “Reducing transient energy growth in a channel flow using static output feedback control,” AIAA Journal, 2022.
  23. H. Yao, Y. Sun, and M. Hemati, “Feedback control of transitional shear flows: Sensor selection for performance recovery,” Theoretical and Computational Fluid Dynamics, 2022.
  24. M. Grant, S. Boyd, and Y. Ye, “Cvx: Matlab software for disciplined convex programming,” 2008.
  25. B. T. Polyak, M. V. Khlebnikov, and P. S. Shcherbakov, “Sparse Feedback in Linear Control Systems,” Automation and Remote Control, vol. 75, no. 12, pp. 2099–2111, 2014.
  26. N. K. Dhingra, M. R. Jovanović, and Z.-Q. Luo, “An ADMM algorithm for optimal sensor and actuator selection,” in 53rd IEEE Conference on Decision and Control, 2014, pp. 4039–4044.
  27. A. Zare and M. R. Jovanović, “Optimal sensor selection via proximal optimization algorithms,” in 2018 IEEE Conference on Decision and Control (CDC).   IEEE, 2018, pp. 6514–6518.
Citations (1)

Summary

We haven't generated a summary for this paper yet.