Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Ensemble Learning with Frame Skipping for Face Anti-Spoofing (2307.02858v2)

Published 6 Jul 2023 in cs.CV

Abstract: Face presentation attacks (PA), also known as spoofing attacks, pose a substantial threat to biometric systems that rely on facial recognition systems, such as access control systems, mobile payments, and identity verification systems. To mitigate the spoofing risk, several video-based methods have been presented in the literature that analyze facial motion in successive video frames. However, estimating the motion between adjacent frames is a challenging task and requires high computational cost. In this paper, we rephrase the face anti-spoofing task as a motion prediction problem and introduce a deep ensemble learning model with a frame skipping mechanism. In particular, the proposed frame skipping adopts a uniform sampling approach by dividing the original video into video clips of fixed size. By doing so, every nth frame of the clip is selected to ensure that the temporal patterns can easily be perceived during the training of three different recurrent neural networks (RNNs). Motivated by the performance of individual RNNs, a meta-model is developed to improve the overall detection performance by combining the prediction of individual RNNs. Extensive experiments were performed on four datasets, and state-of-the-art performance is reported on MSU-MFSD (3.12%), Replay-Attack (11.19%), and OULU-NPU (12.23%) databases by using half total error rates (HTERs) in the most challenging cross-dataset testing scenario.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. U. Muhammad, J. Zhang, L. Liu, and M. Oussalah, “An adaptive spatio-temporal global sampling for presentation attack detection,” IEEE Transactions on Circuits and Systems II: Express Briefs, 2022.
  2. S. Liu, B. Yang, P. C. Yuen, and G. Zhao, “A 3d mask face anti-spoofing database with real world variations,” in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2016, pp. 100–106.
  3. J. Dong, Y. Wang, J. Lai, and X. Xie, “Restricted black-box adversarial attack against deepfake face swapping,” IEEE Transactions on Information Forensics and Security, 2023.
  4. R. Ramachandra, S. Venkatesh, K. Raja, and C. Busch, “Towards making morphing attack detection robust using hybrid scale-space colour texture features,” in 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA).   IEEE, 2019, pp. 1–8.
  5. Y. Xu, K. Raja, R. Ramachandra, and C. Busch, “Adversarial attacks on face recognition systems,” in Handbook of Digital Face Manipulation and Detection: From DeepFakes to Morphing Attacks.   Springer International Publishing Cham, 2022, pp. 139–161.
  6. H.-Y. Lee, J.-B. Huang, M. Singh, and M.-H. Yang, “Unsupervised representation learning by sorting sequences,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 667–676.
  7. D. Xu, J. Xiao, Z. Zhao, J. Shao, D. Xie, and Y. Zhuang, “Self-supervised spatiotemporal learning via video clip order prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 10 334–10 343.
  8. R. Shao, X. Lan, and P. C. Yuen, “Regularized fine-grained meta face anti-spoofing,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 11 974–11 981.
  9. Z. Zhang, C. Jiang, X. Zhong, C. Song, and Y. Zhang, “Two-stream convolutional networks for multi-frame face anti-spoofing,” arXiv preprint arXiv:2108.04032, 2021.
  10. U. Muhammad and M. Oussalah, “Self-supervised face presentation attack detection with dynamic grayscale snippets,” in 2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG).   IEEE, 2023, pp. 1–6.
  11. Z. Boulkenafet, J. Komulainen, and A. Hadid, “Face spoofing detection using colour texture analysis,” IEEE Transactions on Information Forensics and Security, vol. 11, no. 8, pp. 1818–1830, 2016.
  12. D. Wen, H. Han, and A. K. Jain, “Face spoof detection with image distortion analysis,” IEEE Transactions on Information Forensics and Security, vol. 10, no. 4, pp. 746–761, 2015.
  13. U. Muhammad and A. Hadid, “Face anti-spoofing using hybrid residual learning framework,” in 2019 International Conference on Biometrics (ICB).   IEEE, 2019, pp. 1–7.
  14. U. Muhammad, T. Holmberg, W. Carneiro de Melo, and A. Hadid, “Face anti-spoofing via sample learning based recurrent neural network (rnn),” in The British Machine Vision Conference 2019 (BMVC) 9th-12th September 2019, Cardiff UK.   British Machine Vision Association Press, 2019.
  15. M. Liu, J. Mu, Z. Yu, K. Ruan, B. Shu, and J. Yang, “Adversarial learning and decomposition-based domain generalization for face anti-spoofing,” Pattern Recognition Letters, vol. 155, pp. 171–177, 2022.
  16. R. Cai, Z. Li, R. Wan, H. Li, Y. Hu, and A. C. Kot, “Learning meta pattern for face anti-spoofing,” IEEE Transactions on Information Forensics and Security, vol. 17, pp. 1201–1213, 2022.
  17. Q. Zhou, K.-Y. Zhang, T. Yao, R. Yi, K. Sheng, S. Ding, and L. Ma, “Generative domain adaptation for face anti-spoofing,” in Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part V.   Springer, 2022, pp. 335–356.
  18. S. Liu, S. Lu, H. Xu, J. Yang, S. Ding, and L. Ma, “Feature generation and hypothesis verification for reliable face anti-spoofing,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2022, pp. 1782–1791.
  19. H. Huang, Y. Xiang, G. Yang, L. Lv, X. Li, Z. Weng, and Y. Fu, “Generalized face anti-spoofing via cross-adversarial disentanglement with mixing augmentation,” in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2022, pp. 2939–2943.
  20. U. Muhammad and M. Oussalah, “Face anti-spoofing from the perspective of data sampling,” Electronics Letters, vol. 59, no. 1, p. e12692, 2023.
  21. Y. Li, X. Huang, and G. Zhao, “Can micro-expression be recognized based on single apex frame?” in 2018 25th IEEE International Conference on Image Processing (ICIP).   IEEE, 2018, pp. 3094–3098.
  22. W. Yin, Y. Ming, and L. Tian, “A face anti-spoofing method based on optical flow field,” in 2016 IEEE 13th International Conference on Signal Processing (ICSP).   IEEE, 2016, pp. 1333–1337.
  23. U. Muhammad, Z. Yu, and J. Komulainen, “Self-supervised 2D face presentation attack detection via temporal sequence sampling,” Pattern Recognition Letters, vol. 156, pp. 15–22, 2022.
  24. U. Muhammad, D. R. Beddiar, and M. Oussalah, “Domain generalization via ensemble stacking for face presentation attack detection,” arXiv preprint arXiv:2301.02145, 2023.
  25. R. Shao, X. Lan, J. Li, and P. C. Yuen, “Multi-adversarial discriminative deep domain generalization for face presentation attack detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 10 023–10 031.
  26. S. Saha, W. Xu, M. Kanakis, S. Georgoulis, Y. Chen, D. P. Paudel, and L. Van Gool, “Domain agnostic feature learning for image and video based face anti-spoofing,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 802–803.
  27. Y. Jia, J. Zhang, S. Shan, and X. Chen, “Single-side domain generalization for face anti-spoofing,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8484–8493.
  28. G. Wang, H. Han, S. Shan, and X. Chen, “Cross-domain face presentation attack detection via multi-domain disentangled representation learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 6678–6687.
  29. A. Liu, Z. Tan, J. Wan, Y. Liang, Z. Lei, G. Guo, and S. Z. Li, “Face anti-spoofing via adversarial cross-modality translation,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 2759–2772, 2021.
  30. Y. Qin, Z. Yu, L. Yan, Z. Wang, C. Zhao, and Z. Lei, “Meta-teacher for face anti-spoofing,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 10, pp. 6311–6326, 2021.
  31. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  32. M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.
  33. K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN encoder-decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.
  34. Z. Boulkenafet, J. Komulainen, L. Li, X. Feng, and A. Hadid, “OULU-NPU: A mobile face presentation attack database with real-world variations,” in 2017 12th IEEE international conference on automatic face & gesture recognition (FG 2017).   IEEE, 2017, pp. 612–618.
  35. I. Chingovska, A. Anjos, and S. Marcel, “On the effectiveness of local binary patterns in face anti-spoofing,” in 2012 BIOSIG-proceedings of the international conference of biometrics special interest group (BIOSIG).   IEEE, 2012, pp. 1–7.
  36. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.
  37. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026–1034.
  38. L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks of the trade.   Springer, 2002, pp. 55–69.
Citations (4)

Summary

We haven't generated a summary for this paper yet.