Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shuffled Patch-Wise Supervision for Presentation Attack Detection (2109.03484v2)

Published 8 Sep 2021 in cs.CV, cs.CR, and cs.LG

Abstract: Face anti-spoofing is essential to prevent false facial verification by using a photo, video, mask, or a different substitute for an authorized person's face. Most of the state-of-the-art presentation attack detection (PAD) systems suffer from overfitting, where they achieve near-perfect scores on a single dataset but fail on a different dataset with more realistic data. This problem drives researchers to develop models that perform well under real-world conditions. This is an especially challenging problem for frame-based presentation attack detection systems that use convolutional neural networks (CNN). To this end, we propose a new PAD approach, which combines pixel-wise binary supervision with patch-based CNN. We believe that training a CNN with face patches allows the model to distinguish spoofs without learning background or dataset-specific traces. We tested the proposed method both on the standard benchmark datasets -- Replay-Mobile, OULU-NPU -- and on a real-world dataset. The proposed approach shows its superiority on challenging experimental setups. Namely, it achieves higher performance on OULU-NPU protocol 3, 4 and on inter-dataset real-world experiments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Alperen Kantarcı (8 papers)
  2. Hasan Dertli (1 paper)
  3. Hazım Kemal Ekenel (59 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.