Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Euler-Bernoulli beams with contact forces: existence, uniqueness, and numerical solutions (2307.02597v1)

Published 5 Jul 2023 in math.NA, cs.NA, and math.FA

Abstract: In this paper, we investigate the Euler-Bernoulli fourth-order boundary value problem (BVP) $w{(4)}=f(x,w)$, $x\in \intcc{a,b}$, with specified values of $w$ and $w''$ at the end points, where the behaviour of the right-hand side $f$ is motivated by biomechanical, electromechanical, and structural applications incorporating contact forces. In particular, we consider the case when $f$ is bounded above and monotonically decreasing with respect to its second argument. First, we prove the existence and uniqueness of solutions to the BVP. We then study numerical solutions to the BVP, where we resort to spatial discretization by means of finite difference. Similar to the original continuous-space problem, the discrete problem always possesses a unique solution. In the case of a piecewise linear instance of $f$, the discrete problem is an example of the absolute value equation. We show that solutions to this absolute value equation can be obtained by means of fixed-point iterations, and that solutions to the absolute value equation converge to solutions of the continuous BVP. We also illustrate the performance of the fixed-point iterations through a numerical example.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. B. H. Story and I. R. Titze, “Voice simulation with a body-cover model of the vocal folds,” The Journal of the Acoustical Society of America, vol. 97, no. 2, pp. 1249–1260, 1995.
  2. M. A. Serry, C. E. Stepp, and S. D. Peterson, “Physics of phonation offset: Towards understanding relative fundamental frequency observations,” The Journal of the Acoustical Society of America, vol. 149, no. 5, pp. 3654–3664, 2021.
  3. G. E. Galindo, S. D. Peterson, B. D. Erath, C. Castro, R. E. Hillman, and M. Zañartu, “Modeling the pathophysiology of phonotraumatic vocal hyperfunction with a triangular glottal model of the vocal folds,” Journal of Speech, Language, and Hearing Research, vol. 60, no. 9, pp. 2452–2471, 2017.
  4. M. Zañartu, G. E. Galindo, B. D. Erath, S. D. Peterson, G. R. Wodicka, and R. E. Hillman, “Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction,” The Journal of the Acoustical Society of America, vol. 136, no. 6, pp. 3262–3271, 2014.
  5. P. H. Dejonckere and M. Kob, “Pathogenesis of vocal fold nodules: new insights from a modelling approach,” Folia Phoniatrica et Logopaedica, vol. 61, no. 3, pp. 171–179, 2009.
  6. M. Serry, G. Alzamendi, M. Zanartu, and S. Peterson, “An euler-bernoulli-type beam model of the vocal folds for describing curved and incomplete glottal closure patterns,” arXiv preprint, 2023.
  7. B. D. Jensen, K. Huang, L. L.-W. Chow, and K. Kurabayashi, “Adhesion effects on contact opening dynamics in micromachined switches,” Journal of Applied Physics, vol. 97, no. 10, p. 103535, 2005.
  8. B. McCarthy, G. G. Adams, N. E. McGruer, and D. Potter, “A dynamic model, including contact bounce, of an electrostatically actuated microswitch,” Journal of microelectromechanical systems, vol. 11, no. 3, pp. 276–283, 2002.
  9. University of Michigan press Ann Arbor, MI, 1946.
  10. Dordrecht: Springer Netherlands, 2011.
  11. C. G. Vallabhan and Y. Das, “A refined model for beams on elastic foundations,” International Journal of Solids and Structures, vol. 27, no. 5, pp. 629–637, 1991.
  12. G. Jones, Analysis of beams on elastic foundations: using finite difference theory. Thomas Telford, 1997.
  13. R. A. Usmani and M. J. Marsden, “Convergence of a numerical procedure for the solution of a fourth order boundary value problem,” Proceedings of the Indian Academy of Sciences-Section A. Part 3, Mathematical Sciences, vol. 88, no. 1, pp. 21–30, 1979.
  14. Y. S. Yang, “Fourth-order two-point boundary value problems,” Proceedings of the American Mathematical Society, vol. 104, no. 1, pp. 175–180, 1988.
  15. A. Aftabizadeh, “Existence and uniqueness theorems for fourth-order boundary value problems,” Journal of Mathematical Analysis and Applications, vol. 116, no. 2, pp. 415–426, 1986.
  16. Y. Li and H. Yang, “An existence and uniqueness result for a bending beam equation without growth restriction,” in Abstract and Applied Analysis, vol. 2010, Hindawi, 2010.
  17. Y. Li and Y. Gao, “Existence and uniqueness results for the bending elastic beam equations,” Applied Mathematics Letters, vol. 95, pp. 72–77, 2019.
  18. Y. Li and Q. Liang, “Existence results for a fully fourth-order boundary value problem,” Journal of Function Spaces and Applications, vol. 2013, 2013.
  19. D. Quang A and N. T. K. Quy, “New fixed point approach for a fully nonlinear fourth order boundary value problem,” Boletim da Sociedade Paranaense de Matematica, vol. 36, no. 4, pp. 209–223, 2018.
  20. R. P. Agarwal, “On fourth order boundary value problems arising in beam analysis,” Differential and Integral Equations, vol. 2, no. 1, pp. 91–110, 1989.
  21. Z. Bai, “The method of lower and upper solutions for a bending of an elastic beam equation,” Journal of Mathematical Analysis and Applications, vol. 248, no. 1, pp. 195–202, 2000.
  22. G. Han and F. Li, “Multiple solutions of some fourth-order boundary value problems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 66, no. 11, pp. 2591–2603, 2007.
  23. H. Feng, D. Ji, and W. Ge, “Existence and uniqueness of solutions for a fourth-order boundary value problem,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 10, pp. 3561–3566, 2009.
  24. Y. Li and X. Chen, “Solvability for fully cantilever beam equations with superlinear nonlinearities,” Boundary Value Problems, vol. 2019, no. 1, pp. 1–9, 2019.
  25. D. Quang A and N. T. Huong, “Existence results and numerical method for a fourth order nonlinear problem,” International Journal of Applied and Computational Mathematics, vol. 4, no. 6, p. 148, 2018.
  26. D. Quang A and T. K. Quy, “Existence results and iterative method for solving the cantilever beam equation with fully nonlinear term,” Nonlinear Analysis: Real World Applications, vol. 36, pp. 56–68, 2017.
  27. J. Caballero, J. Harjani, and K. Sadarangani, “Uniqueness of positive solutions for a class of fourth-order boundary value problems,” in Abstract and Applied Analysis, vol. 2011, Hindawi, 2011.
  28. M. Ruyun, Z. Jihui, and F. Shengmao, “The method of lower and upper solutions for fourth-order two-point boundary value problems,” Journal of Mathematical Analysis and Applications, vol. 215, no. 2, pp. 415–422, 1997.
  29. Macmillan New York, 1988.
  30. American Mathematical Soc., 2011.
  31. Springer Science & Business Media, 2012.
  32. R. A. Usmani and M. J. Marsden, “Numerical solution of some ordinary differential equations occurring in plate deflection theory,” Journal of Engineering Mathematics, vol. 9, no. 1, pp. 1–10, 1975.
  33. A.-M. Wazwaz, “The numerical solution of special fourth-order boundary value problems by the modified decomposition method,” International journal of computer mathematics, vol. 79, no. 3, pp. 345–356, 2002.
  34. A. Ali, “Numerical solution of fourth order boundary-value problems using haar wavelets,” Appl. Math. Sci., vol. 5, no. 63, pp. 3131–3146, 2011.
  35. W. K. Zahra, “Finite-difference technique based on exponential splines for the solution of obstacle problems,” International Journal of Computer Mathematics, vol. 88, no. 14, pp. 3046–3060, 2011.
  36. V. S. Ertürk and S. Momani, “Comparing numerical methods for solving fourth-order boundary value problems,” Applied Mathematics and Computation, vol. 188, no. 2, pp. 1963–1968, 2007.
  37. M. A. Hajji and K. Al-Khaled, “Numerical methods for nonlinear fourth-order boundary value problems with applications,” International Journal of Computer Mathematics, vol. 85, no. 1, pp. 83–104, 2008.
  38. O. Mangasarian and R. Meyer, “Absolute value equations,” Linear Algebra and Its Applications, vol. 419, no. 2-3, pp. 359–367, 2006.
  39. F. Mezzadri, “On the solution of general absolute value equations,” Applied mathematics letters, vol. 107, p. 106462, 2020.
  40. J. Rohn, V. Hooshyarbakhsh, and R. Farhadsefat, “An iterative method for solving absolute value equations and sufficient conditions for unique solvability,” Optimization Letters, vol. 8, pp. 35–44, 2014.
  41. S.-L. Wu and C.-X. Li, “The unique solution of the absolute value equations,” Applied Mathematics Letters, vol. 76, pp. 195–200, 2018.
  42. S.-L. Wu and C.-X. Li, “A note on unique solvability of the absolute value equation,” Optimization Letters, vol. 14, no. 7, pp. 1957–1960, 2020.
  43. M. Radons and S. M. Rump, “Convergence results for some piecewise linear solvers,” Optimization Letters, vol. 16, no. 6, pp. 1663–1673, 2022.
  44. R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press, 2 ed., 2013.
  45. P. S. Timoshenko, “Lxvi. on the correction for shear of the differential equation for transverse vibrations of prismatic bars,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 41, no. 245, pp. 744–746, 1921.

Summary

We haven't generated a summary for this paper yet.