Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence analysis of a weak Galerkin finite element method on a Shishkin mesh for a singularly perturbed fourth-order problem in 2D (2306.15867v3)

Published 28 Jun 2023 in math.NA and cs.NA

Abstract: We consider the singularly perturbed fourth-order boundary value problem $\varepsilon {2}\Delta {2}u-\Delta u=f $ on the unit square $\Omega \subset \mathbb{R}2$, with boundary conditions $u = \partial u / \partial n = 0$ on $\partial \Omega$, where $\varepsilon \in (0, 1)$ is a small parameter. The problem is solved numerically by means of a weak Galerkin(WG) finite element method, which is highly robust and flexible in the element construction by using discontinuous piecewise polynomials on finite element partitions consisting of polygons of arbitrary shape. The resulting WG finite element formulation is symmetric, positive definite, and parameter-free. Under reasonable assumptions on the structure of the boundary layers that appear in the solution, a family of suitable Shishkin meshes with $N2$ elements is constructed ,convergence of the method is proved in a discrete $H2$ norm for the corresponding WG finite element solutions and numerical results are presented.

Summary

We haven't generated a summary for this paper yet.