Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Evolution of entanglement entropy at SU($N$) deconfined quantum critical points (2307.02547v5)

Published 5 Jul 2023 in cond-mat.str-el, hep-lat, hep-ph, and hep-th

Abstract: Over the past two decades, the enigma of the deconfined quantum critical point (DQCP) has attracted broad attention across the condensed matter, quantum field theory, and high-energy physics communities, as it is expected to offer a new paradigm in theory, experiment, and numerical simulations that goes beyond the Landau-Ginzburg-Wilson framework of symmetry breaking and phase transitions. However, the nature of DQCP has been controversial. For instance, in the square-lattice spin-1/2 $J$-$Q$ model, believed to realize the DQCP between N\'eel and valence bond solid states, conflicting results, such as first-order versus continuous transition, and critical exponents incompatible with conformal bootstrap bounds, have been reported. The enigma of DQCP is exemplified in its anomalous logarithmic subleading contribution in its entanglement entropy (EE), which was discussed in recent studies. In the current work, we demonstrate that similar anomalous logarithmic behavior persists in a class of models analogous to the DQCP. We systematically study the quantum EE of square-lattice SU($N$) DQCP spin models. Based on large-scale quantum Monte Carlo computation of the EE, we show that for a series of $N$ smaller than a critical value, the anomalous logarithmic behavior always exists in the EE, which implies that the previously determined DQCPs in these models do not belong to conformal fixed points. In contrast, when $N\ge N_c$ with a finite $N_c$ that we evaluate to lie between $7$ and $8$, the DQCPs are consistent with conformal fixed points that can be understood within the Abelian Higgs field theory with $N$ complex components.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. A. W. Sandvik, Evidence for Deconfined Quantum Criticality in a Two-Dimensional Heisenberg Model with Four-Spin Interactions, Phys. Rev. Lett. 98, 227202 (2007).
  2. T. Senthil, Deconfined quantum critical points: a review, arXiv:2306.12638 .
  3. A. Vishwanath and T. Senthil, Physics of Three-Dimensional Bosonic Topological Insulators: Surface-Deconfined Criticality and Quantized Magnetoelectric Effect, Phys. Rev. X 3, 011016 (2013).
  4. N. Ma, Y.-Z. You, and Z. Y. Meng, Role of Noether’s Theorem at the Deconfined Quantum Critical Point, Phys. Rev. Lett. 122, 175701 (2019).
  5. G. J. Sreejith, S. Powell, and A. Nahum, Emergent SO(5) Symmetry at the Columnar Ordering Transition in the Classical Cubic Dimer Model, Phys. Rev. Lett. 122, 080601 (2019).
  6. J. Lou, A. W. Sandvik, and N. Kawashima, Antiferromagnetic to valence-bond-solid transitions in two-dimensional SU⁢(N)SU𝑁\text{SU}(N)SU ( italic_N ) Heisenberg models with multispin interactions, Phys. Rev. B 80, 180414 (2009).
  7. H. Shao, W. Guo, and A. W. Sandvik, Quantum criticality with two length scales, Science 352, 213 (2016).
  8. J. D’Emidio, A. A. Eberharter, and A. M. Läuchli, Diagnosing weakly first-order phase transitions by coupling to order parameters, arXiv:2106.15462 .
  9. R. Ma and C. Wang, Theory of deconfined pseudocriticality, Phys. Rev. B 102, 020407 (2020).
  10. A. Nahum, Note on Wess-Zumino-Witten models and quasiuniversality in 2+1212+12 + 1 dimensions, Phys. Rev. B 102, 201116 (2020).
  11. Y. Nakayama and T. Ohtsuki, Necessary Condition for Emergent Symmetry from the Conformal Bootstrap, Phys. Rev. Lett. 117, 131601 (2016).
  12. B. Zhao, J. Takahashi, and A. W. Sandvik, Multicritical Deconfined Quantum Criticality and Lifshitz Point of a Helical Valence-Bond Phase, Phys. Rev. Lett. 125, 257204 (2020).
  13. E. Fradkin and J. E. Moore, Entanglement Entropy of 2D Conformal Quantum Critical Points: Hearing the Shape of a Quantum Drum, Phys. Rev. Lett. 97, 050404 (2006).
  14. N. Laflorencie, Quantum entanglement in condensed matter systems, Phys. Rep. 646, 1 (2016).
  15. J. L. Cardy and I. Peschel, Finite-size dependence of the free energy in two-dimensional critical systems, Nucl. Phys. B 300, 377 (1988).
  16. P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. Theory Exp. 2004, P06002 (2004).
  17. H. Casini and M. Huerta, Universal terms for the entanglement entropy in 2+1 dimensions, Nucl. Phys. B 764, 183 (2007a).
  18. R. K. Kaul, Quantum phase transitions in bilayer SU(N𝑁Nitalic_N) antiferromagnets, Phys. Rev. B 85, 180411 (2012).
  19. R. K. Kaul, R. G. Melko, and A. W. Sandvik, Bridging Lattice-Scale Physics and Continuum Field Theory with Quantum Monte Carlo Simulations, Annu. Rev. Condens. Matter Phys. 4, 179 (2013).
  20. R. K. Kaul and A. W. Sandvik, Lattice Model for the SU⁢(N)SU𝑁\mathrm{SU}(N)roman_SU ( italic_N ) Néel to Valence-Bond Solid Quantum Phase Transition at Large N𝑁Nitalic_N, Phys. Rev. Lett. 108, 137201 (2012).
  21. M. S. Block, R. G. Melko, and R. K. Kaul, Fate of ℂ⁢ℙN−1ℂsuperscriptℙ𝑁1\mathbb{C}{\mathbb{P}}^{N-1}blackboard_C blackboard_P start_POSTSUPERSCRIPT italic_N - 1 end_POSTSUPERSCRIPT Fixed Points with q𝑞qitalic_q Monopoles, Phys. Rev. Lett. 111, 137202 (2013).
  22. V. Alba, Out-of-equilibrium protocol for Rényi entropies via the Jarzynski equality, Phys. Rev. E 95, 062132 (2017).
  23. J. D’Emidio, Entanglement Entropy from Nonequilibrium Work, Phys. Rev. Lett. 124, 110602 (2020).
  24. S. Sachdev, Quantum magnetism and criticality, Nat. Phys. 4, 173 (2008).
  25. V. Y. Irkhin, A. A. Katanin, and M. I. Katsnelson, 1/N1𝑁1/N1 / italic_N expansion for critical exponents of magnetic phase transitions in the 𝐶𝑃N−1superscript𝐶𝑃𝑁1{\mathit{CP}}^{\mathit{N}\mathrm{-}1}italic_CP start_POSTSUPERSCRIPT italic_N - 1 end_POSTSUPERSCRIPT model for 2<d<42𝑑42<d<42 < italic_d < 4, Phys. Rev. B 54, 11953 (1996).
  26. R. K. Kaul and S. Sachdev, Quantum criticality of U(1) gauge theories with fermionic and bosonic matter in two spatial dimensions, Phys. Rev. B 77, 155105 (2008).
  27. M. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett. 96, 110405 (2006).
  28. A. Kitaev and J. Preskill, Topological Entanglement Entropy, Phys. Rev. Lett. 96, 110404 (2006).
  29. I. Affleck, Large-n𝑛nitalic_n Limit of SU⁢(n)SU𝑛\mathrm{SU}(n)roman_SU ( italic_n ) Quantum "Spin" Chains, Phys. Rev. Lett. 54, 966 (1985).
  30. N. Read and S. Sachdev, Valence-bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets, Phys. Rev. Lett. 62, 1694 (1989).
  31. R. G. Melko and R. K. Kaul, Scaling in the Fan of an Unconventional Quantum Critical Point, Phys. Rev. Lett. 100, 017203 (2008).
  32. R. K. Kaul, Quantum criticality in SU(3) and SU(4) antiferromagnets, Phys. Rev. B 84, 054407 (2011).
  33. N. Read and S. Sachdev, Large-N𝑁Nitalic_N expansion for frustrated quantum antiferromagnets, Phys. Rev. Lett. 66, 1773 (1991).
  34. F. F. Assaad, Phase diagram of the half-filled two-dimensional SU⁢(N)SU𝑁\mathrm{SU}(N)roman_SU ( italic_N ) Hubbard-Heisenberg model: A quantum Monte Carlo study, Phys. Rev. B 71, 075103 (2005).
  35. H. Casini and M. Huerta, Universal terms for the entanglement entropy in 2+1 dimensions, Nucl. Phys. B 764, 183 (2007b).
  36. S. Humeniuk and T. Roscilde, Quantum Monte Carlo calculation of entanglement Rényi entropies for generic quantum systems, Phys. Rev. B 86, 235116 (2012).
  37. J. Helmes and S. Wessel, Entanglement entropy scaling in the bilayer Heisenberg spin system, Phys. Rev. B 89, 245120 (2014).
  38. S. V. Isakov, M. B. Hastings, and R. G. Melko, Topological entanglement entropy of a Bose-Hubbard spin liquid, Nat. Phys. 7, 772 (2011).
  39. C. Jarzynski, Nonequilibrium Equality for Free Energy Differences, Phys. Rev. Lett. 78, 2690 (1997).
  40. Y. Da Liao, Controllable Incremental Algorithm for Entanglement Entropy in Quantum Monte Carlo Simulations, arXiv e-prints , arXiv:2307.10602 (2023).
  41. P. Bueno and W. Witczak-Krempa, Bounds on corner entanglement in quantum critical states, Phys. Rev. B 93, 045131 (2016).
  42. P. Bueno, R. C. Myers, and W. Witczak-Krempa, Universality of Corner Entanglement in Conformal Field Theories, Phys. Rev. Lett. 115, 021602 (2015).
  43. M. A. Metlitski and T. Grover, Entanglement Entropy of Systems with Spontaneously Broken Continuous Symmetry, arXiv:1112.5166 .
  44. Y.-C. Wang, M. Cheng, and Z. Y. Meng, Scaling of the disorder operator at (2+1)⁢d21𝑑(2+1)d( 2 + 1 ) italic_d U(1) quantum criticality, Phys. Rev. B 104, L081109 (2021c).
  45. J. D’Emidio and A. W. Sandvik, Entanglement entropy and deconfined criticality: emergent SO(5) symmetry and proper lattice bipartition, arXiv e-prints , arXiv:2401.14396 (2024).
  46. C. Bonati, A. Pelissetto, and E. Vicari, Lattice Abelian-Higgs model with noncompact gauge fields, Phys. Rev. B 103, 085104 (2021).
  47. The authors thank T. Senthil and Max Metlitski for proposing this possible explanation.
  48. K. Harada, N. Kawashima, and M. Troyer, Néel and Spin-Peierls Ground States of Two-Dimensional SU⁢(N)SU𝑁\mathrm{S}\mathrm{U}(N)roman_SU ( italic_N ) Quantum Antiferromagnets, Phys. Rev. Lett. 90, 117203 (2003).
  49. J. D’Emidio, M. S. Block, and R. K. Kaul, Rényi entanglement entropy of critical SU⁢(N)SU𝑁\mathrm{SU}(N)roman_SU ( italic_N ) spin chains, Phys. Rev. B 92, 054411 (2015).
  50. A. W. Sandvik and H. G. Evertz, Loop updates for variational and projector quantum Monte Carlo simulations in the valence-bond basis, Phys. Rev. B 82, 024407 (2010).
  51. T.-T. Wang and Z. Y. Meng, Emus live on the Gross-Neveu-Yukawa archipelago, arXiv:2304.00034 .
  52. B. I. Halperin, T. C. Lubensky, and S.-k. Ma, First-Order Phase Transitions in Superconductors and Smectic-A𝐴Aitalic_A Liquid Crystals, Phys. Rev. Lett. 32, 292 (1974).
  53. P. R. Bevington and D. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).
  54. P. Young, Everything You Wanted to Know About Data Analysis and Fitting but Were Afraid to Ask (Springer, 2015).
Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.