Inflation in simple one-loop effective potentials of perturbative quantum gravity (2307.02214v3)
Abstract: We study inflation in scalar-tensor perturbative quantum gravity driven by a one-loop effective potential. We consider effective potentials generated by three models. The first model describes a single scalar field with a non-vanishing mass. The second model describes a massless scalar field with non-minimal coupling to the Einstein tensor. The third model generalises the Coleman-Weinberg model for the gravitational case. The first model can be consistent with the observational data for $N\sim 70$ e-foldings. The second model can be consistent with the observational data for $N \sim 40$ e-foldings. We did not find parameters that make the generalised Coleman-Weinberg model consistent with the observational data. We discuss the implications of these results and ways to improve them with other terms of effective action.
- Alexei A. Starobinsky. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B, 91:99–102, 1980. doi:10.1016/0370-2693(80)90670-X.
- Andrei D. Linde. Chaotic Inflation. Phys. Lett. B, 129:177–181, 1983. doi:10.1016/0370-2693(83)90837-7.
- Introduction to the theory of the early universe: Cosmological perturbations and inflationary theory. 2011. doi:10.1142/7873.
- Introduction to the Theory of the Early Universe: Hot big bang theory. World Scientific, Singapore, 2017. doi:10.1142/10447.
- V. Mukhanov. Physical Foundations of Cosmology. Cambridge University Press, Oxford, 2005. doi:10.1017/CBO9780511790553.
- Y. Akrami et al. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys., 641:A10, 2020. arXiv:1807.06211, doi:10.1051/0004-6361/201833887.
- G. Hinshaw et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys. J. Suppl., 208:19, 2013. arXiv:1212.5226, doi:10.1088/0067-0049/208/2/19.
- P. A. R. Ade et al. Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season. Phys. Rev. Lett., 127(15):151301, 2021. arXiv:2110.00483, doi:10.1103/PhysRevLett.127.151301.
- Planck and BICEP/Keck Array 2018 constraints on primordial gravitational waves and perspectives for future B-mode polarization measurements. Phys. Rev. D, 106(8):083528, 2022. arXiv:2208.10482, doi:10.1103/PhysRevD.106.083528.
- P. A. R. Ade et al. Planck 2013 results. XXII. Constraints on inflation. Astron. Astrophys., 571:A22, 2014. arXiv:1303.5082, doi:10.1051/0004-6361/201321569.
- Encyclopædia Inflationaris. Phys. Dark Univ., 5-6:75–235, 2014. arXiv:1303.3787, doi:10.1016/j.dark.2014.01.003.
- Andrei Linde. Inflationary Cosmology after Planck 2013. In 100e Ecole d’Ete de Physique: Post-Planck Cosmology, pages 231–316, 2015. arXiv:1402.0526, doi:10.1093/acprof:oso/9780198728856.003.0006.
- Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept., 692:1–104, 2017. arXiv:1705.11098, doi:10.1016/j.physrep.2017.06.001.
- Generalized G-inflation: Inflation with the most general second-order field equations. Prog. Theor. Phys., 126:511–529, 2011. arXiv:1105.5723, doi:10.1143/PTP.126.511.
- Higgs inflation: consistency and generalisations. JHEP, 01:016, 2011. arXiv:1008.5157, doi:10.1007/JHEP01(2011)016.
- Inflation scenario via the Standard Model Higgs boson and LHC. JCAP, 11:021, 2008. arXiv:0809.2104, doi:10.1088/1475-7516/2008/11/021.
- V. K. Oikonomou. A refined Einstein–Gauss–Bonnet inflationary theoretical framework. Class. Quant. Grav., 38(19):195025, 2021. arXiv:2108.10460, doi:10.1088/1361-6382/ac2168.
- R2 quantum corrected scalar field inflation. Nucl. Phys. B, 978:115779, 2022. arXiv:2204.02454, doi:10.1016/j.nuclphysb.2022.115779.
- V. K. Oikonomou. Non-minimal derivative coupling theories compatible with GW170817. Nucl. Phys. B, 1000:116467, 2024. arXiv:2402.02050, doi:10.1016/j.nuclphysb.2024.116467.
- Recent Advances in Inflation. Symmetry, 15(9):1701, 2023. arXiv:2307.16308, doi:10.3390/sym15091701.
- Formalizing the slow roll approximation in inflation. Phys. Rev. D, 50:7222–7232, 1994. arXiv:astro-ph/9408015, doi:10.1103/PhysRevD.50.7222.
- One loop divergencies in the theory of gravitation. Ann. Inst. H. Poincare Phys. Theor. A, 20:69–94, 1974.
- One Loop Divergences of Quantized Einstein-Maxwell Fields. Phys. Rev. D, 10:401, 1974. doi:10.1103/PhysRevD.10.401.
- Quantum Gravity at Two Loops. Phys. Lett. B, 160:81–86, 1985. doi:10.1016/0370-2693(85)91470-4.
- Effective action in quantum gravity. 1992.
- Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Phys. Rev. D, 7:1888–1910, 1973. doi:10.1103/PhysRevD.7.1888.
- R. Jackiw. Functional evaluation of the effective potential. Phys. Rev. D, 9:1686, 1974. doi:10.1103/PhysRevD.9.1686.
- The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity. Phys. Rept., 119:1–74, 1985. doi:10.1016/0370-1573(85)90148-6.
- G. A. Vilkovisky. The Unique Effective Action in Quantum Field Theory. Nucl. Phys. B, 234:125–137, 1984. doi:10.1016/0550-3213(84)90228-1.
- Effective potential of scalar–tensor gravity. Class. Quant. Grav., 38(1):015012, 2021. arXiv:2007.06306, doi:10.1088/1361-6382/abc572.
- Effective potential of scalar-tensor gravity with quartic self-interaction of scalar field. Class. Quant. Grav., 39(5):055003, 2022. arXiv:2109.09797, doi:10.1088/1361-6382/ac4827.
- Boris Latosh. FeynGrav: FeynCalc extension for gravity amplitudes. Class. Quant. Grav., 39(16):165006, 2022. arXiv:2201.06812, doi:10.1088/1361-6382/ac7e15.
- Boris Latosh. FeynGrav 2.0. 2 2023. arXiv:2302.14310.
- B. N. Latosh. Basic Problems of Conservative Approaches to a Theory of Quantum Gravity. Phys. Part. Nucl., 51(5):859–878, 2020. arXiv:2003.02462, doi:10.1134/S1063779620050056.
- C. P. Burgess. Quantum gravity in everyday life: General relativity as an effective field theory. Living Rev. Rel., 7:5–56, 2004. arXiv:gr-qc/0311082, doi:10.12942/lrr-2004-5.
- N. Avdeev and A. Toporensky. On Viability of Inflation in Nonminimal Kinetic Coupling Theory. Grav. Cosmol., 27(3):269–274, 2021. arXiv:2103.00556, doi:10.1134/S0202289321030038.
- Ruling Out Inflation Driven by a Power Law Potential: Kinetic Coupling Does Not Help. Grav. Cosmol., 28(4):416–419, 2022. arXiv:2203.14599, doi:10.1134/S0202289322040028.
- Slow-Roll Inflation in Scalar-Tensor Models. JCAP, 09:007, 2019. arXiv:1905.08349, doi:10.1088/1475-7516/2019/09/007.
- Slow-Roll Inflation with Exponential Potential in Scalar-Tensor Models. Eur. Phys. J. C, 79(9):772, 2019. arXiv:1907.06806, doi:10.1140/epjc/s10052-019-7289-z.
- Coleman-Weinberg Inflation in light of Planck. Phys. Lett. B, 730:81–88, 2014. arXiv:1309.1695, doi:10.1016/j.physletb.2014.01.039.
- Boris Latosh. One-loop effective scalar-tensor gravity. Eur. Phys. J. C, 80(9):845, 2020. arXiv:2004.00927, doi:10.1140/epjc/s10052-020-8371-2.
- G-inflation: Inflation driven by the Galileon field. Phys. Rev. Lett., 105:231302, 2010. arXiv:1008.0603, doi:10.1103/PhysRevLett.105.231302.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.