On evolution kernels of twist-two operators (2307.01763v2)
Abstract: The evolution kernels that govern the scale dependence of the generalized parton distributions are invariant under transformations of the $\mathrm{SL}(2,\mathrm R)$ collinear subgroup of the conformal group. Beyond one loop the symmetry generators, due to quantum effects, differ from the canonical ones. We construct the transformation which brings the {\it full} symmetry generators back to their canonical form and show that the eigenvalues (anomalous dimensions) of the new, canonically invariant, evolution kernel coincide with the so-called parity respecting anomalous dimensions. We develop an efficient method that allows one to restore an invariant kernel from the corresponding anomalous dimensions. As an example, the explicit expressions for NNLO invariant kernels for the twist two flavor-nonsinglet operators in QCD and for the planar part of the universal anomalous dimension in $ N=4$ SYM are presented.
- A. V. Radyushkin, Scaling limit of deeply virtual Compton scattering, Phys. Lett. B380, 417 (1996), arXiv:hep-ph/9604317 [hep-ph] .
- X.-D. Ji, Deeply virtual Compton scattering, Phys. Rev. D55, 7114 (1997), arXiv:hep-ph/9609381 [hep-ph] .
- S. Moch, J. A. M. Vermaseren, and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688, 101 (2004), arXiv:hep-ph/0403192 .
- A. Vogt, S. Moch, and J. A. M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B 691, 129 (2004), arXiv:hep-ph/0404111 .
- D. Müller, Constraints for anomalous dimensions of local light cone operators in ϕ3superscriptitalic-ϕ3\phi^{3}italic_ϕ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT in six-dimensions theory, Z. Phys. C 49, 293 (1991).
- D. Müller, Restricted conformal invariance in QCD and its predictive power for virtual two photon processes, Phys. Rev. D 58, 054005 (1998), arXiv:hep-ph/9704406 .
- A. V. Belitsky and D. Müller, Predictions from conformal algebra for the deeply virtual Compton scattering, Phys. Lett. B417, 129 (1998), arXiv:hep-ph/9709379 [hep-ph] .
- A. V. Belitsky and D. Müller, Broken conformal invariance and spectrum of anomalous dimensions in QCD, Nucl. Phys. B 537, 397 (1999), arXiv:hep-ph/9804379 .
- A. V. Belitsky, A. Freund, and D. Müller, Evolution kernels of skewed parton distributions: Method and two loop results, Nucl. Phys. B 574, 347 (2000), arXiv:hep-ph/9912379 .
- V. M. Braun and A. N. Manashov, Evolution equations beyond one loop from conformal symmetry, Eur. Phys. J. C 73, 2544 (2013), arXiv:1306.5644 [hep-th] .
- V. M. Braun and A. N. Manashov, Two-loop evolution equations for light-ray operators, Phys. Lett. B 734, 137 (2014), arXiv:1404.0863 [hep-ph] .
- V. M. Braun, Y. Ji, and A. N. Manashov, Two-photon processes in conformal QCD: resummation of the descendants of leading-twist operators, JHEP 03, 051, arXiv:2011.04533 [hep-ph] .
- V. M. Braun, Y. Ji, and A. N. Manashov, Next-to-leading-power kinematic corrections to DVCS: a scalar target, JHEP 01, 078, arXiv:2211.04902 [hep-ph] .
- B. Basso and G. P. Korchemsky, Anomalous dimensions of high-spin operators beyond the leading order, Nucl. Phys. B 775, 1 (2007), arXiv:hep-th/0612247 .
- Y. L. Dokshitzer, G. Marchesini, and G. P. Salam, Revisiting parton evolution and the large-x limit, Phys. Lett. B 634, 504 (2006), arXiv:hep-ph/0511302 .
- E. Remiddi and J. A. M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15, 725 (2000), arXiv:hep-ph/9905237 .
- I. I. Balitsky and V. M. Braun, Evolution Equations for QCD String Operators, Nucl. Phys. B 311, 541 (1989).
- V. N. Gribov and L. N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15, 438 (1972a).
- V. N. Gribov and L. N. Lipatov, e+e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT pair annihilation and deep inelastic ep𝑒𝑝epitalic_e italic_p scattering in perturbation theory, Sov. J. Nucl. Phys. 15, 675 (1972b).
- Y. L. Dokshitzer and G. Marchesini, 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SUSY Yang-Mills: three loops made simple(r), Phys. Lett. B 646, 189 (2007), arXiv:hep-th/0612248 .
- M. Beccaria and V. Forini, Four loop reciprocity of twist two operators in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM, JHEP 03, 111, arXiv:0901.1256 [hep-th] .
- L. F. Alday, A. Bissi, and T. Lukowski, Large spin systematics in CFT, JHEP 11, 101, arXiv:1502.07707 [hep-th] .
- A. V. Kotikov, A. Rej, and S. Zieme, Analytic three-loop Solutions for 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM Twist Operators, Nucl. Phys. B 813, 460 (2009), arXiv:0810.0691 [hep-th] .
- C. Marboe, V. Velizhanin, and D. Volin, Six-loop anomalous dimension of twist-two operators in planar 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM theory, JHEP 07, 084, arXiv:1412.4762 [hep-th] .
- C. Marboe and V. Velizhanin, Twist-2 at seven loops in planar 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM theory: full result and analytic properties, JHEP 11, 013, arXiv:1607.06047 [hep-th] .
- A. M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164, 171 (1980).
- G. P. Korchemsky and A. V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283, 342 (1987).
- J. M. Henn, G. P. Korchemsky, and B. Mistlberger, The full four-loop cusp anomalous dimension in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 super Yang-Mills and QCD, JHEP 04, 018, arXiv:1911.10174 [hep-th] .
- A. von Manteuffel, E. Panzer, and R. M. Schabinger, Cusp and collinear anomalous dimensions in four-loop QCD from form factors, Phys. Rev. Lett. 124, 162001 (2020), arXiv:2002.04617 [hep-ph] .
- N. Beisert, B. Eden, and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech. 0701, P01021 (2007), arXiv:hep-th/0610251 .
- E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun. 188, 148 (2015), arXiv:1403.3385 [hep-th] .
- C. Duhr and F. Dulat, PolyLogTools — polylogs for the masses, JHEP 08, 135, arXiv:1904.07279 [hep-th] .
- A. V. Kotikov, L. N. Lipatov, and V. N. Velizhanin, Anomalous dimensions of Wilson operators in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM theory, Phys. Lett. B 557, 114 (2003), arXiv:hep-ph/0301021 .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.