Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shapes of the Cosmological Low-Speed Collider (2307.01751v1)

Published 4 Jul 2023 in hep-th, astro-ph.CO, and gr-qc

Abstract: Massive particles produced during inflation leave specific signatures in soft limits of correlation functions of primordial fluctuations. When the Goldstone boson of broken time translations acquires a reduced speed of sound, implying that de Sitter boosts are strongly broken, we introduce a novel discovery channel to detect new physics during inflation, called the cosmological low-speed collider signal. This signal is characterised by a distinctive resonance lying in mildly-soft kinematic configurations of cosmological correlators, indicating the presence of a heavy particle, whose position enables to reconstruct its mass. We show that this resonance can be understood in terms of a non-local single field effective field theory, in which the heavy field becomes effectively non-dynamical. This theory accurately describes the full dynamics of the Goldstone boson and captures all multi-field physical effects distinct from the non-perturbative particle production leading to the conventional cosmological collider signal. As such, this theory provides a systematic and tractable way to study the imprint of massive fields on cosmological correlators. We conduct a thorough study of the low-speed collider phenomenology in the scalar bispectrum, showing that large non-Gaussianities with new shapes can be generated, in particular beyond weak mixing. We also provide a low-speed collider template for future cosmological surveys.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (83)
  1. A. Achúcarro et al., “Inflation: Theory and Observations,” arXiv:2203.08128 [astro-ph.CO].
  2. C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan, and L. Senatore, “The Effective Field Theory of Inflation,” JHEP 03 (2008) 014, arXiv:0709.0293 [hep-th].
  3. Planck Collaboration, Y. Akrami et al., “Planck 2018 results. IX. Constraints on primordial non-Gaussianity,” Astron. Astrophys. 641 (2020) A9, arXiv:1905.05697 [astro-ph.CO].
  4. E. Silverstein and D. Tong, “Scalar speed limits and cosmology: Acceleration from D-cceleration,” Phys. Rev. D 70 (2004) 103505, arXiv:hep-th/0310221.
  5. M. Alishahiha, E. Silverstein, and D. Tong, “DBI in the sky,” Phys. Rev. D70 (2004) 123505, arXiv:hep-th/0404084.
  6. D. Baumann and L. McAllister, Inflation and String Theory. Cambridge University Press, 2015. arXiv:1404.2601 [hep-th]. https://inspirehep.net/record/1289899/files/arXiv:1404.2601.pdf.
  7. X. Chen and Y. Wang, “Quasi-Single Field Inflation and Non-Gaussianities,” JCAP 04 (2010) 027, arXiv:0911.3380 [hep-th].
  8. T. Noumi, M. Yamaguchi, and D. Yokoyama, “Effective field theory approach to quasi-single field inflation and effects of heavy fields,” JHEP 06 (2013) 051, arXiv:1211.1624 [hep-th].
  9. N. Arkani-Hamed and J. Maldacena, “Cosmological Collider Physics,” arXiv:1503.08043 [hep-th].
  10. X. Chen and Y. Wang, “Large non-Gaussianities with Intermediate Shapes from Quasi-Single Field Inflation,” Phys. Rev. D 81 (2010) 063511, arXiv:0909.0496 [astro-ph.CO].
  11. D. Baumann and D. Green, “Signatures of Supersymmetry from the Early Universe,” Phys. Rev. D 85 (2012) 103520, arXiv:1109.0292 [hep-th].
  12. X. Chen, M. H. Namjoo, and Y. Wang, “Quantum Primordial Standard Clocks,” JCAP 02 (2016) 013, arXiv:1509.03930 [astro-ph.CO].
  13. X. Chen, Y. Wang, and Z.-Z. Xianyu, “Loop Corrections to Standard Model Fields in Inflation,” JHEP 08 (2016) 051, arXiv:1604.07841 [hep-th].
  14. H. Lee, D. Baumann, and G. L. Pimentel, “Non-Gaussianity as a Particle Detector,” JHEP 12 (2016) 040, arXiv:1607.03735 [hep-th].
  15. X. Chen, Y. Wang, and Z.-Z. Xianyu, “Standard Model Background of the Cosmological Collider,” Phys. Rev. Lett. 118 no. 26, (2017) 261302, arXiv:1610.06597 [hep-th].
  16. H. An, M. McAneny, A. K. Ridgway, and M. B. Wise, “Quasi Single Field Inflation in the non-perturbative regime,” JHEP 06 (2018) 105, arXiv:1706.09971 [hep-ph].
  17. A. V. Iyer, S. Pi, Y. Wang, Z. Wang, and S. Zhou, “Strongly Coupled Quasi-Single Field Inflation,” JCAP 01 (2018) 041, arXiv:1710.03054 [hep-th].
  18. X. Chen, Y. Wang, and Z.-Z. Xianyu, “Neutrino Signatures in Primordial Non-Gaussianities,” JHEP 09 (2018) 022, arXiv:1805.02656 [hep-ph].
  19. M. McAneny and A. K. Ridgway, “New Shapes of Primordial Non-Gaussianity from Quasi-Single Field Inflation with Multiple Isocurvatons,” Phys. Rev. D 100 no. 4, (2019) 043534, arXiv:1903.11607 [astro-ph.CO].
  20. S. Alexander, S. J. Gates, L. Jenks, K. Koutrolikos, and E. McDonough, “Higher Spin Supersymmetry at the Cosmological Collider: Sculpting SUSY Rilles in the CMB,” JHEP 10 (2019) 156, arXiv:1907.05829 [hep-th].
  21. S. Lu, Y. Wang, and Z.-Z. Xianyu, “A Cosmological Higgs Collider,” JHEP 02 (2020) 011, arXiv:1907.07390 [hep-th].
  22. T. Liu, X. Tong, Y. Wang, and Z.-Z. Xianyu, “Probing P and CP Violations on the Cosmological Collider,” JHEP 04 (2020) 189, arXiv:1909.01819 [hep-ph].
  23. L.-T. Wang and Z.-Z. Xianyu, “In Search of Large Signals at the Cosmological Collider,” JHEP 02 (2020) 044, arXiv:1910.12876 [hep-ph].
  24. D.-G. Wang, “On the inflationary massive field with a curved field manifold,” JCAP 01 (2020) 046, arXiv:1911.04459 [astro-ph.CO].
  25. L.-T. Wang and Z.-Z. Xianyu, “Gauge Boson Signals at the Cosmological Collider,” JHEP 11 (2020) 082, arXiv:2004.02887 [hep-ph].
  26. C. M. Sou, X. Tong, and Y. Wang, “Chemical-potential-assisted particle production in FRW spacetimes,” JHEP 06 (2021) 129, arXiv:2104.08772 [hep-th].
  27. Q. Lu, M. Reece, and Z.-Z. Xianyu, “Missing scalars at the cosmological collider,” JHEP 12 (2021) 098, arXiv:2108.11385 [hep-ph].
  28. L.-T. Wang, Z.-Z. Xianyu, and Y.-M. Zhong, “Precision Calculation of Inflation Correlators at One Loop,” arXiv:2109.14635 [hep-ph].
  29. L. Pinol, S. Aoki, S. Renaux-Petel, and M. Yamaguchi, “Inflationary flavor oscillations and the cosmic spectroscopy,” arXiv:2112.05710 [hep-th].
  30. Y. Cui and Z.-Z. Xianyu, “Probing Leptogenesis with the Cosmological Collider,” arXiv:2112.10793 [hep-ph].
  31. X. Tong and Z.-Z. Xianyu, “Large spin-2 signals at the cosmological collider,” JHEP 10 (2022) 194, arXiv:2203.06349 [hep-ph].
  32. M. Reece, L.-T. Wang, and Z.-Z. Xianyu, “Large-Field Inflation and the Cosmological Collider,” arXiv:2204.11869 [hep-ph].
  33. G. L. Pimentel and D.-G. Wang, “Boostless Cosmological Collider Bootstrap,” arXiv:2205.00013 [hep-th].
  34. Z. Qin and Z.-Z. Xianyu, “Phase Information in Cosmological Collider Signals,” arXiv:2205.01692 [hep-th].
  35. S. Jazayeri and S. Renaux-Petel, “Cosmological Bootstrap in Slow Motion,” arXiv:2205.10340 [hep-th].
  36. Z. Qin and Z.-Z. Xianyu, “Helical inflation correlators: partial Mellin-Barnes and bootstrap equations,” JHEP 04 (2023) 059, arXiv:2208.13790 [hep-th].
  37. Z.-Z. Xianyu and H. Zhang, “Bootstrapping One-Loop Inflation Correlators with the Spectral Decomposition,” arXiv:2211.03810 [hep-th].
  38. Z. Qin and Z.-Z. Xianyu, “Closed-Form Formulae for Inflation Correlators,” arXiv:2301.07047 [hep-th].
  39. D. Werth, L. Pinol, and S. Renaux-Petel, “Cosmological Flow of Primordial Correlators,” arXiv:2302.00655 [hep-th].
  40. M. Alvarez et al., “Testing inflation with large scale structure: Connecting hopes with reality,” arXiv:1412.4671 [astro-ph.CO].
  41. J. B. Muñoz, Y. Ali-Haïmoud, and M. Kamionkowski, “Primordial non-gaussianity from the bispectrum of 21-cm fluctuations in the dark ages,” Phys. Rev. D 92 no. 8, (2015) 083508, arXiv:1506.04152 [astro-ph.CO].
  42. P. D. Meerburg, M. Münchmeyer, J. B. Muñoz, and X. Chen, “Prospects for Cosmological Collider Physics,” JCAP 03 (2017) 050, arXiv:1610.06559 [astro-ph.CO].
  43. A. Moradinezhad Dizgah and C. Dvorkin, “Scale-Dependent Galaxy Bias from Massive Particles with Spin during Inflation,” JCAP 01 (2018) 010, arXiv:1708.06473 [astro-ph.CO].
  44. A. Moradinezhad Dizgah, H. Lee, J. B. Muñoz, and C. Dvorkin, “Galaxy Bispectrum from Massive Spinning Particles,” JCAP 05 (2018) 013, arXiv:1801.07265 [astro-ph.CO].
  45. N. Arkani-Hamed, D. Baumann, H. Lee, and G. L. Pimentel, “The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities,” JHEP 04 (2020) 105, arXiv:1811.00024 [hep-th].
  46. C. Sleight, “A Mellin Space Approach to Cosmological Correlators,” JHEP 01 (2020) 090, arXiv:1906.12302 [hep-th].
  47. C. Sleight and M. Taronna, “Bootstrapping Inflationary Correlators in Mellin Space,” JHEP 02 (2020) 098, arXiv:1907.01143 [hep-th].
  48. D. Werth, L. Pinol, and S. Renaux-Petel, “The Cosmological Flow: A Systematic Approach to Inflationary Correlators,”.
  49. L. Senatore and M. Zaldarriaga, “The Effective Field Theory of Multifield Inflation,” JHEP 04 (2012) 024, arXiv:1009.2093 [hep-th].
  50. F. Piazza and F. Vernizzi, “Effective Field Theory of Cosmological Perturbations,” Class. Quant. Grav. 30 (2013) 214007, arXiv:1307.4350 [hep-th].
  51. D. Baumann and D. Green, “Equilateral Non-Gaussianity and New Physics on the Horizon,” JCAP 1109 (2011) 014, arXiv:1102.5343 [hep-th].
  52. Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” arXiv:1807.06209 [astro-ph.CO].
  53. C. de Rham and S. Melville, “Unitary null energy condition violation in P(X) cosmologies,” Phys. Rev. D 95 no. 12, (2017) 123523, arXiv:1703.00025 [hep-th].
  54. T. Grall and S. Melville, “Inflation in Motion: Unitarity Constraints in Effective Field Theories with Broken Lorentz Symmetry,” arXiv:2005.02366 [gr-qc].
  55. V. Assassi, D. Baumann, D. Green, and L. McAllister, “Planck-Suppressed Operators,” JCAP 1401 (2014) 033, arXiv:1304.5226 [hep-th].
  56. D. Baumann, D. Green, and R. A. Porto, “B-modes and the Nature of Inflation,” JCAP 01 (2015) 016, arXiv:1407.2621 [hep-th].
  57. R. Gwyn, G. A. Palma, M. Sakellariadou, and S. Sypsas, “Effective field theory of weakly coupled inflationary models,” JCAP 1304 (2013) 004, arXiv:1210.3020 [hep-th].
  58. M. Hongo, S. Kim, T. Noumi, and A. Ota, “Effective field theory of time-translational symmetry breaking in nonequilibrium open system,” JHEP 02 (2019) 131, arXiv:1805.06240 [hep-th].
  59. S. A. Salcedo, M. H. G. Lee, S. Melville, and E. Pajer, “The Analytic Wavefunction,” arXiv:2212.08009 [hep-th].
  60. N. Arkani-Hamed, P. Creminelli, S. Mukohyama, and M. Zaldarriaga, “Ghost Inflation,” JCAP 0404 (2004) 001, arXiv:hep-th/0312100.
  61. D. Baumann, D. Green, A. Joyce, E. Pajer, G. L. Pimentel, C. Sleight, and M. Taronna, “Snowmass White Paper: The Cosmological Bootstrap,” in 2022 Snowmass Summer Study. 3, 2022. arXiv:2203.08121 [hep-th].
  62. S. Jazayeri, E. Pajer, and D. Stefanyszyn, “From locality and unitarity to cosmological correlators,” JHEP 10 (2021) 065, arXiv:2103.08649 [hep-th].
  63. D. Anninos, T. Anous, D. Z. Freedman, and G. Konstantinidis, “Late-time Structure of the Bunch-Davies De Sitter Wavefunction,” JCAP 11 (2015) 048, arXiv:1406.5490 [hep-th].
  64. G. Goon, K. Hinterbichler, A. Joyce, and M. Trodden, “Shapes of gravity: Tensor non-Gaussianity and massive spin-2 fields,” arXiv:1812.07571 [hep-th].
  65. D. J. Mulryne, “Transporting non-Gaussianity from sub to super-horizon scales,” JCAP 1309 (2013) 010, arXiv:1302.3842 [astro-ph.CO].
  66. E. Castillo, B. Koch, and G. Palma, “On the integration of fields and quanta in time dependent backgrounds,” JHEP 05 (2014) 111, arXiv:1312.3338 [hep-th].
  67. D. Baumann and D. Green, “Signature of supersymmetry from the early universe,” Phys. Rev. D 85 (May, 2012) 103520. https://link.aps.org/doi/10.1103/PhysRevD.85.103520.
  68. A. Gangui, F. Lucchin, S. Matarrese, and S. Mollerach, “The three-point correlation function of the cosmic microwave background in inflationary models,” The Astrophysical Journal 430 (Aug, 1994) 447. https://doi.org/10.1086%2F174421.
  69. L.-M. Wang and M. Kamionkowski, “The cosmic microwave background bispectrum and inflation,” Phys. Rev. D61 (2000) 063504, arXiv:astro-ph/9907431.
  70. L. Verde, L.-M. Wang, A. Heavens, and M. Kamionkowski, “Large-scale structure, the cosmic microwave background, and primordial non-gaussianity,” Mon. Not. Roy. Astron. Soc. 313 (2000) L141–L147, arXiv:astro-ph/9906301.
  71. E. Komatsu and D. N. Spergel, “Acoustic signatures in the primary microwave background bispectrum,” Phys. Rev. D63 (2001) 063002, arXiv:astro-ph/0005036.
  72. D. Babich, P. Creminelli, and M. Zaldarriaga, “The shape of non-Gaussianities,” JCAP 0408 (2004) 009, arXiv:astro-ph/0405356.
  73. P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark, and M. Zaldarriaga, “Limits on non-Gaussianities from WMAP data,” JCAP 0605 (2006) 004, arXiv:astro-ph/0509029.
  74. L. Senatore, K. M. Smith, and M. Zaldarriaga, “Non-Gaussianities in Single Field Inflation and their Optimal Limits from the WMAP 5-year Data,” JCAP 1001 (2010) 028, arXiv:0905.3746 [astro-ph.CO].
  75. J. R. Fergusson and E. P. S. Shellard, “The shape of primordial non-Gaussianity and the CMB bispectrum,” Phys. Rev. D80 (2009) 043510, arXiv:0812.3413 [astro-ph].
  76. S. Renaux-Petel, “Combined local and equilateral non-Gaussianities from multifield DBI inflation,” JCAP 0910 (2009) 012, arXiv:0907.2476 [hep-th].
  77. S. Renaux-Petel, S. Mizuno, and K. Koyama, “Primordial fluctuations and non-Gaussianities from multifield DBI Galileon inflation,” JCAP 11 (2011) 042, arXiv:1108.0305 [astro-ph.CO].
  78. D.-G. Wang, G. L. Pimentel, and A. Achúcarro, “Bootstrapping Multi-Field Inflation: non-Gaussianities from light scalars revisited,” arXiv:2212.14035 [astro-ph.CO].
  79. K. M. Smith and M. Zaldarriaga, “Algorithms for bispectra: forecasting, optimal analysis, and simulation,” arXiv:astro-ph/0612571.
  80. J. R. Fergusson and E. P. S. Shellard, “Primordial non-Gaussianity and the CMB bispectrum,” Phys. Rev. D76 (2007) 083523, arXiv:astro-ph/0612713.
  81. K. M. Smith and M. Zaldarriaga, “Algorithms for bispectra: forecasting, optimal analysis and simulation,” Monthly Notices of the Royal Astronomical Society 417 no. 1, (Sep, 2011) 2–19. https://doi.org/10.1111%2Fj.1365-2966.2010.18175.x.
  82. S. B. Giddings and M. S. Sloth, “Cosmological diagrammatic rules,” JCAP 07 (2010) 015, arXiv:1005.3287 [hep-th].
  83. X. Chen, Y. Wang, and Z.-Z. Xianyu, “Schwinger-keldysh diagrammatics for primordial perturbations,” Journal of Cosmology and Astroparticle Physics 2017 no. 12, (2017) 006, arXiv:1703.10166 [hep-th].
Citations (19)

Summary

We haven't generated a summary for this paper yet.