Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Searching for Cosmological Collider in the Planck CMB Data (2404.07203v2)

Published 10 Apr 2024 in astro-ph.CO, gr-qc, hep-ph, and hep-th

Abstract: In this paper, we present the first comprehensive CMB data analysis of cosmological collider physics. New heavy particles during inflation can leave imprints in the primordial correlators which are observable in today's cosmological surveys. This remarkable detection channel provides an unsurpassed opportunity to probe new physics at extremely high energies. Here we initiate the search for these relic signals in the cosmic microwave background (CMB) data from the Planck legacy release. On the theory side, guided by recent progress from the cosmological bootstrap, we first propose a family of analytic bispectrum templates that incorporate the distinctive signatures of cosmological collider physics. Our consideration includes the oscillatory signals in the squeezed limit, the angular dependence from spinning fields, and several new shapes from nontrivial sound speed effects. On the observational side, we apply the recently developed pipeline, CMB Bispectrum Estimator (CMB-BEST), to efficiently analyze the three-point statistics and search directly for these new templates in the Planck 2018 temperature and polarization data. We report stringent CMB constraints on these new templates. Furthermore, we perform parameter scans to search for the best-fit values with maximum significance. For a benchmark example of collider templates, we find $f_{NL}=-91\pm40$ at the $68\%$ confidence level. After accounting for the look-elsewhere effect, the biggest adjusted significance we get is $1.8\sigma$. In general, we find no significant evidence of cosmological collider signals in the Planck data. However, this innovative analysis demonstrates the potential for discovering new heavy particles during inflation in forthcoming cosmological surveys.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (93)
  1. X. Chen and Y. Wang, “Quasi-Single Field Inflation and Non-Gaussianities,” JCAP 04 (2010) 027, arXiv:0911.3380 [hep-th].
  2. D. Baumann and D. Green, “Signatures of Supersymmetry from the Early Universe,” Phys. Rev. D 85 (2012) 103520, arXiv:1109.0292 [hep-th].
  3. T. Noumi, M. Yamaguchi, and D. Yokoyama, “Effective field theory approach to quasi-single field inflation and effects of heavy fields,” JHEP 06 (2013) 051, arXiv:1211.1624 [hep-th].
  4. N. Arkani-Hamed and J. Maldacena, “Cosmological Collider Physics,” arXiv:1503.08043 [hep-th].
  5. X. Chen and Y. Wang, “Large non-Gaussianities with Intermediate Shapes from Quasi-Single Field Inflation,” Phys. Rev. D 81 (2010) 063511, arXiv:0909.0496 [astro-ph.CO].
  6. V. Assassi, D. Baumann, and D. Green, “On Soft Limits of Inflationary Correlation Functions,” JCAP 11 (2012) 047, arXiv:1204.4207 [hep-th].
  7. X. Chen and Y. Wang, “Quasi-Single Field Inflation with Large Mass,” JCAP 09 (2012) 021, arXiv:1205.0160 [hep-th].
  8. S. Pi and M. Sasaki, “Curvature Perturbation Spectrum in Two-field Inflation with a Turning Trajectory,” JCAP 10 (2012) 051, arXiv:1205.0161 [hep-th].
  9. X. Chen, M. H. Namjoo, and Y. Wang, “Quantum Primordial Standard Clocks,” JCAP 02 (2016) 013, arXiv:1509.03930 [astro-ph.CO].
  10. H. Lee, D. Baumann, and G. L. Pimentel, “Non-Gaussianity as a Particle Detector,” JHEP 12 (2016) 040, arXiv:1607.03735 [hep-th].
  11. X. Chen, Y. Wang, and Z.-Z. Xianyu, “Standard Model Background of the Cosmological Collider,” Phys. Rev. Lett. 118 (2017) no. 26, 261302, arXiv:1610.06597 [hep-th].
  12. X. Chen, Y. Wang, and Z.-Z. Xianyu, “Standard Model Mass Spectrum in Inflationary Universe,” JHEP 04 (2017) 058, arXiv:1612.08122 [hep-th].
  13. X. Chen, Y. Wang, and Z.-Z. Xianyu, “Schwinger-Keldysh Diagrammatics for Primordial Perturbations,” JCAP 12 (2017) 006, arXiv:1703.10166 [hep-th].
  14. A. Kehagias and A. Riotto, “On the Inflationary Perturbations of Massive Higher-Spin Fields,” JCAP 07 (2017) 046, arXiv:1705.05834 [hep-th].
  15. S. Kumar and R. Sundrum, “Heavy-Lifting of Gauge Theories By Cosmic Inflation,” JHEP 05 (2018) 011, arXiv:1711.03988 [hep-ph].
  16. H. An, M. McAneny, A. K. Ridgway, and M. B. Wise, “Quasi Single Field Inflation in the non-perturbative regime,” JHEP 06 (2018) 105, arXiv:1706.09971 [hep-ph].
  17. H. An, M. McAneny, A. K. Ridgway, and M. B. Wise, “Non-Gaussian Enhancements of Galactic Halo Correlations in Quasi-Single Field Inflation,” Phys. Rev. D 97 (2018) no. 12, 123528, arXiv:1711.02667 [hep-ph].
  18. D. Baumann, G. Goon, H. Lee, and G. L. Pimentel, “Partially Massless Fields During Inflation,” JHEP 04 (2018) 140, arXiv:1712.06624 [hep-th].
  19. X. Chen, Y. Wang, and Z.-Z. Xianyu, “Neutrino Signatures in Primordial Non-Gaussianities,” JHEP 09 (2018) 022, arXiv:1805.02656 [hep-ph].
  20. S. Kumar and R. Sundrum, “Seeing Higher-Dimensional Grand Unification In Primordial Non-Gaussianities,” JHEP 04 (2019) 120, arXiv:1811.11200 [hep-ph].
  21. L. Bordin, P. Creminelli, A. Khmelnitsky, and L. Senatore, “Light Particles with Spin in Inflation,” JCAP 10 (2018) 013, arXiv:1806.10587 [hep-th].
  22. S. Kim, T. Noumi, K. Takeuchi, and S. Zhou, “Heavy Spinning Particles from Signs of Primordial Non-Gaussianities: Beyond the Positivity Bounds,” JHEP 12 (2019) 107, arXiv:1906.11840 [hep-th].
  23. S. Alexander, S. J. Gates, L. Jenks, K. Koutrolikos, and E. McDonough, “Higher Spin Supersymmetry at the Cosmological Collider: Sculpting SUSY Rilles in the CMB,” JHEP 10 (2019) 156, arXiv:1907.05829 [hep-th].
  24. L.-T. Wang and Z.-Z. Xianyu, “In Search of Large Signals at the Cosmological Collider,” JHEP 02 (2020) 044, arXiv:1910.12876 [hep-ph].
  25. D.-G. Wang, “On the inflationary massive field with a curved field manifold,” JCAP 01 (2020) 046, arXiv:1911.04459 [astro-ph.CO].
  26. S. Aoki and M. Yamaguchi, “Disentangling mass spectra of multiple fields in cosmological collider,” JHEP 04 (2021) 127, arXiv:2012.13667 [hep-th].
  27. Q. Lu, M. Reece, and Z.-Z. Xianyu, “Missing scalars at the cosmological collider,” JHEP 12 (2021) 098, arXiv:2108.11385 [hep-ph].
  28. L.-T. Wang, Z.-Z. Xianyu, and Y.-M. Zhong, “Precision calculation of inflation correlators at one loop,” JHEP 02 (2022) 085, arXiv:2109.14635 [hep-ph].
  29. X. Tong, Y. Wang, and Y. Zhu, “Cutting rule for cosmological collider signals: a bulk evolution perspective,” JHEP 03 (2022) 181, arXiv:2112.03448 [hep-th].
  30. Y. Cui and Z.-Z. Xianyu, “Probing Leptogenesis with the Cosmological Collider,” arXiv:2112.10793 [hep-ph].
  31. X. Tong and Z.-Z. Xianyu, “Large Spin-2 Signals at the Cosmological Collider,” arXiv:2203.06349 [hep-ph].
  32. M. Reece, L.-T. Wang, and Z.-Z. Xianyu, “Large-Field Inflation and the Cosmological Collider,” arXiv:2204.11869 [hep-ph].
  33. X. Chen, R. Ebadi, and S. Kumar, “Classical cosmological collider physics and primordial features,” JCAP 08 (2022) 083, arXiv:2205.01107 [hep-ph].
  34. Z. Qin and Z.-Z. Xianyu, “Phase information in cosmological collider signals,” JHEP 10 (2022) 192, arXiv:2205.01692 [hep-th].
  35. X. Niu, M. H. Rahat, K. Srinivasan, and W. Xue, “Gravitational Wave Probes of Massive Gauge Bosons at the Cosmological Collider,” arXiv:2211.14331 [hep-ph].
  36. X. Chen, J. Fan, and L. Li, “New inflationary probes of axion dark matter,” JHEP 12 (2023) 197, arXiv:2303.03406 [hep-ph].
  37. Z.-Z. Xianyu and J. Zang, “Inflation correlators with multiple massive exchanges,” JHEP 03 (2024) 070, arXiv:2309.10849 [hep-th].
  38. P. Chakraborty and J. Stout, “Light scalars at the cosmological collider,” JHEP 02 (2024) 021, arXiv:2310.01494 [hep-th].
  39. S. Jazayeri, S. Renaux-Petel, and D. Werth, “Shapes of the cosmological low-speed collider,” JCAP 12 (2023) 035, arXiv:2307.01751 [hep-th].
  40. S. Aoki, T. Noumi, F. Sano, and M. Yamaguchi, “Analytic formulae for inflationary correlators with dynamical mass,” JHEP 24 (2020) 073, arXiv:2312.09642 [hep-th].
  41. C. McCulloch, E. Pajer, and X. Tong, “A Cosmological Tachyon Collider: Enhancing the Long-Short Scale Coupling,” arXiv:2401.11009 [hep-th].
  42. Y.-P. Wu, “The cosmological collider in R2superscript𝑅2R^{2}italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT inflation,” arXiv:2404.05031 [astro-ph.CO].
  43. N. Arkani-Hamed, D. Baumann, H. Lee, and G. L. Pimentel, “The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities,” JHEP 04 (2020) 105, arXiv:1811.00024 [hep-th].
  44. D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee, and G. L. Pimentel, “The cosmological bootstrap: weight-shifting operators and scalar seeds,” JHEP 12 (2020) 204, arXiv:1910.14051 [hep-th].
  45. D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee, and G. L. Pimentel, “The Cosmological Bootstrap: Spinning Correlators from Symmetries and Factorization,” SciPost Phys. 11 (2021) 071, arXiv:2005.04234 [hep-th].
  46. N. Arkani-Hamed, P. Benincasa, and A. Postnikov, “Cosmological Polytopes and the Wavefunction of the Universe,” arXiv:1709.02813 [hep-th].
  47. P. Benincasa, “From the flat-space S-matrix to the Wavefunction of the Universe,” arXiv:1811.02515 [hep-th].
  48. C. Sleight, “A Mellin Space Approach to Cosmological Correlators,” JHEP 01 (2020) 090, arXiv:1906.12302 [hep-th].
  49. C. Sleight and M. Taronna, “Bootstrapping Inflationary Correlators in Mellin Space,” JHEP 02 (2020) 098, arXiv:1907.01143 [hep-th].
  50. H. Goodhew, S. Jazayeri, and E. Pajer, “The Cosmological Optical Theorem,” JCAP 04 (2021) 021, arXiv:2009.02898 [hep-th].
  51. S. Céspedes, A.-C. Davis, and S. Melville, “On the time evolution of cosmological correlators,” JHEP 02 (2021) 012, arXiv:2009.07874 [hep-th].
  52. E. Pajer, “Building a Boostless Bootstrap for the Bispectrum,” JCAP 01 (2021) 023, arXiv:2010.12818 [hep-th].
  53. S. Jazayeri, E. Pajer, and D. Stefanyszyn, “From locality and unitarity to cosmological correlators,” JHEP 10 (2021) 065, arXiv:2103.08649 [hep-th].
  54. J. Bonifacio, E. Pajer, and D.-G. Wang, “From amplitudes to contact cosmological correlators,” JHEP 10 (2021) 001, arXiv:2106.15468 [hep-th].
  55. S. Melville and E. Pajer, “Cosmological Cutting Rules,” JHEP 05 (2021) 249, arXiv:2103.09832 [hep-th].
  56. H. Goodhew, S. Jazayeri, M. H. Gordon Lee, and E. Pajer, “Cutting cosmological correlators,” JCAP 08 (2021) 003, arXiv:2104.06587 [hep-th].
  57. G. L. Pimentel and D.-G. Wang, “Boostless cosmological collider bootstrap,” JHEP 10 (2022) 177, arXiv:2205.00013 [hep-th].
  58. S. Jazayeri and S. Renaux-Petel, “Cosmological Bootstrap in Slow Motion,” arXiv:2205.10340 [hep-th].
  59. D. Baumann, D. Green, A. Joyce, E. Pajer, G. L. Pimentel, C. Sleight, and M. Taronna, “Snowmass White Paper: The Cosmological Bootstrap,” in 2022 Snowmass Summer Study. 3, 2022. arXiv:2203.08121 [hep-th].
  60. Z. Qin and Z.-Z. Xianyu, “Helical Inflation Correlators: Partial Mellin-Barnes and Bootstrap Equations,” arXiv:2208.13790 [hep-th].
  61. S. A. Salcedo, M. H. G. Lee, S. Melville, and E. Pajer, “The Analytic Wavefunction,” JHEP 06 (2023) 020, arXiv:2212.08009 [hep-th].
  62. D.-G. Wang, G. L. Pimentel, and A. Achúcarro, “Bootstrapping multi-field inflation: non-Gaussianities from light scalars revisited,” JCAP 05 (2023) 043, arXiv:2212.14035 [astro-ph.CO].
  63. Z. Qin and Z.-Z. Xianyu, “Closed-form formulae for inflation correlators,” JHEP 07 (2023) 001, arXiv:2301.07047 [hep-th].
  64. D. Stefanyszyn, X. Tong, and Y. Zhu, “Cosmological Correlators Through the Looking Glass: Reality, Parity, and Factorisation,” arXiv:2309.07769 [hep-th].
  65. C. Duaso Pueyo and E. Pajer, “A Cosmological Bootstrap for Resonant Non-Gaussianity,” arXiv:2311.01395 [hep-th].
  66. S. Céspedes, A.-C. Davis, and D.-G. Wang, “On the IR Divergences in de Sitter Space: loops, resummation and the semi-classical wavefunction,” arXiv:2311.17990 [hep-th].
  67. N. Arkani-Hamed, D. Baumann, A. Hillman, A. Joyce, H. Lee, and G. L. Pimentel, “Kinematic Flow and the Emergence of Time,” arXiv:2312.05300 [hep-th].
  68. N. Arkani-Hamed, D. Baumann, A. Hillman, A. Joyce, H. Lee, and G. L. Pimentel, “Differential Equations for Cosmological Correlators,” arXiv:2312.05303 [hep-th].
  69. A. Bzowski, P. McFadden, and K. Skenderis, “Renormalisation of IR divergences and holography in de Sitter,” arXiv:2312.17316 [hep-th].
  70. J. Chen and B. Feng, “Towards Systematic Evaluation of de Sitter Correlators via Generalized Integration-By-Parts Relations,” arXiv:2401.00129 [hep-th].
  71. S. Melville and G. L. Pimentel, “A de Sitter S-matrix from amputated cosmological correlators,” arXiv:2404.05712 [hep-th].
  72. J. R. Fergusson, M. Liguori, and E. P. S. Shellard, “General CMB and Primordial Bispectrum Estimation I: Mode Expansion, Map-Making and Measures of f_NL,” Phys. Rev. D 82 (2010) 023502, arXiv:0912.5516 [astro-ph.CO].
  73. J. R. Fergusson, M. Liguori, and E. P. S. Shellard, “The CMB Bispectrum,” JCAP 12 (2012) 032, arXiv:1006.1642 [astro-ph.CO].
  74. M. Bucher, B. Van Tent, and C. S. Carvalho, “Detecting bispectral acoustic oscillations from inflation using a new flexible estimator: Detecting bispectral acoustic oscillations from inflation using a new flexible estimator,” MNRAS 407 (2010) no. 4, 2193–2206.
  75. E. Sefusatti, J. R. Fergusson, X. Chen, and E. P. S. Shellard, “Effects and Detectability of Quasi-Single Field Inflation in the Large-Scale Structure and Cosmic Microwave Background,” JCAP 08 (2012) 033, arXiv:1204.6318 [astro-ph.CO].
  76. G. Cabass, M. M. Ivanov, O. H. E. Philcox, M. Simonović, and M. Zaldarriaga, “Constraints on Single-Field Inflation from the BOSS Galaxy Survey,” Phys. Rev. Lett. 129 (2022) no. 2, 021301, arXiv:2201.07238 [astro-ph.CO].
  77. G. D’Amico, M. Lewandowski, L. Senatore, and P. Zhang, “Limits on primordial non-Gaussianities from BOSS galaxy-clustering data,” arXiv:2201.11518 [astro-ph.CO].
  78. G. Cabass, M. M. Ivanov, O. H. E. Philcox, M. Simonović, and M. Zaldarriaga, “Constraints on multifield inflation from the BOSS galaxy survey,” Phys. Rev. D 106 (2022) no. 4, 043506, arXiv:2204.01781 [astro-ph.CO].
  79. P. D. Meerburg, M. Münchmeyer, J. B. Muñoz, and X. Chen, “Prospects for Cosmological Collider Physics,” JCAP 03 (2017) 050, arXiv:1610.06559 [astro-ph.CO].
  80. A. Moradinezhad Dizgah and C. Dvorkin, “Scale-Dependent Galaxy Bias from Massive Particles with Spin during Inflation,” JCAP 01 (2018) 010, arXiv:1708.06473 [astro-ph.CO].
  81. A. Moradinezhad Dizgah, H. Lee, J. B. Muñoz, and C. Dvorkin, “Galaxy Bispectrum from Massive Spinning Particles,” JCAP 05 (2018) 013, arXiv:1801.07265 [astro-ph.CO].
  82. E. Komatsu, D. N. Spergel, and B. D. Wandelt, “Measuring primordial non-Gaussianity in the cosmic microwave background,” Astrophys. J. 634 (2005) 14–19, arXiv:astro-ph/0305189.
  83. P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark, and M. Zaldarriaga, “Limits on non-Gaussianities from WMAP data,” Journal of Cosmology and Astroparticle Physics 2006 (2006) no. 05, 004.
  84. A. P. S. Yadav, E. Komatsu, and B. D. Wandelt, “Fast estimator of primordial non-gaussianity from temperature and polarization anisotropies in the cosmic microwave background,” The Astrophysical Journal 664 (2007) no. 2, 680.
  85. L. Senatore, K. M. Smith, and M. Zaldarriaga, “Non-Gaussianities in Single Field Inflation and their Optimal Limits from the WMAP 5-year Data,” JCAP 01 (2010) 028, arXiv:0905.3746 [astro-ph.CO].
  86. K. M. Smith and M. Zaldarriaga, “Algorithms for bispectra: Forecasting, optimal analysis, and simulation,” Mon. Not. Roy. Astron. Soc. 417 (2011) 2–19, arXiv:astro-ph/0612571.
  87. J. R. Fergusson, “Efficient optimal non-Gaussian CMB estimators with polarisation,” Phys. Rev. D 90 (2014) no. 4, 043533, arXiv:1403.7949 [astro-ph.CO].
  88. M. Bucher, B. Racine, and B. van Tent, “The binned bispectrum estimator: template-based and non-parametric CMB non-Gaussianity searches,” JCAP 05 (2016) 055, arXiv:1509.08107 [astro-ph.CO].
  89. W. Sohn, J. R. Fergusson, and E. P. S. Shellard, “High-resolution CMB bispectrum estimator with flexible modal bases,” Phys. Rev. D 108 (2023) no. 6, 063504, arXiv:2305.14646 [astro-ph.CO].
  90. M. Shiraishi, E. Komatsu, M. Peloso, and N. Barnaby, “Signatures of anisotropic sources in the squeezed-limit bispectrum of the cosmic microwave background,” JCAP 05 (2013) 002, arXiv:1302.3056 [astro-ph.CO].
  91. S. Renaux-Petel, S. Mizuno, and K. Koyama, “Primordial fluctuations and non-Gaussianities from multifield DBI Galileon inflation,” JCAP 11 (2011) 042, arXiv:1108.0305 [astro-ph.CO].
  92. J. R. Fergusson, H. F. Gruetjen, E. P. S. Shellard, and M. Liguori, “Combining power spectrum and bispectrum measurements to detect oscillatory features,” Phys. Rev. D 91 (2015) no. 2, 023502.
  93. G. Cabass, O. H. E. Philcox, M. M. Ivanov, K. Akitsu, S.-F. Chen, M. Simonović, and M. Zaldarriaga, “BOSS Constraints on Massive Particles during Inflation: The Cosmological Collider in Action,” arXiv:2404.01894 [astro-ph.CO].
Citations (11)

Summary

We haven't generated a summary for this paper yet.